• Home
  • Courses
  • Online Test
  • Contact
    Have any question?
    +91-8287971571
    contact@dronstudy.com
    Login
    DronStudy
    • Home
    • Courses
    • Online Test
    • Contact

      Class 12 PHYSICS – JEE

      • Home
      • All courses
      • Class 12
      • Class 12 PHYSICS – JEE
      CoursesClass 12PhysicsClass 12 PHYSICS – JEE
      • 1.Electrostatics (1)
        8
        • Lecture1.1
          Charge, Coulombs Law and Coulombs law in Vector form 41 min
        • Lecture1.2
          Electric Field; Electric Field Lines; Field lines due to multiple charges 42 min
        • Lecture1.3
          Charge Distribution; Finding Electric Field due to Different Object 01 hour
        • Lecture1.4
          Solid angle; Area Vector; Electric Flux; Flux of closed surface; Gauss Law 47 min
        • Lecture1.5
          Finding E Using Concept of Gauss law and Flux 01 hour
        • Lecture1.6
          Chapter Notes – Electrostatics (1)
        • Lecture1.7
          NCERT Solutions – Electrostatics
        • Lecture1.8
          Revision Notes Electrostatics
      • 2.Electrostatics (2)
        7
        • Lecture2.1
          Work done by Electrostatic Force; Work done by man in E-Field; Electrostatic Potential Energy 49 min
        • Lecture2.2
          Finding Electric Potential, Equipotential Surface and Motion in Electric Field 01 hour
        • Lecture2.3
          Electric Dipole and Dipole in Uniform and Non-uniform Electric field 01 hour
        • Lecture2.4
          Analysis of charge on conductors; Potential due to induced charge 58 min
        • Lecture2.5
          Conductors with cavity- Case 1: Empty cavity, Case 2: Charge Inside Cavity 41 min
        • Lecture2.6
          Connecting Two Conductors; Grounding of conductor; Electric field just outside conductor; Electrostatic pressure; Self potential Energy 54 min
        • Lecture2.7
          Chapter Notes – Electrostatics (2)
      • 3.Current Electricity (1)
        9
        • Lecture3.1
          Current, Motion of Electrons in Conductor; Temp. Dependence of Resistor 26 min
        • Lecture3.2
          Circuit Theory and Kirchoffs Laws 31 min
        • Lecture3.3
          Some Special Circuits- Series & Parallel Circuits, Open Circuit, Short Circuit 26 min
        • Lecture3.4
          Wheatstone Bridge, Current Antisymmetric 21 min
        • Lecture3.5
          Equivalent Resistance- Series and parallel, Equipotential Points, Wheatstone Bridge 25 min
        • Lecture3.6
          Current Antisymmetric, Infinite Ladder, Circuit Solving, 3D circuits 20 min
        • Lecture3.7
          Chapter Notes – Current Electricity
        • Lecture3.8
          NCERT Solutions – Current Electricity
        • Lecture3.9
          Revision Notes Current Electricity
      • 4.Current Electricity (2)
        4
        • Lecture4.1
          Heating Effect of Current; Rating of Bulb; Fuse 19 min
        • Lecture4.2
          Battery, Maximum power theorem; Ohmic and Non Ohmic Resistance; Superconductor 31 min
        • Lecture4.3
          Galvanometer; Ammeter & Voltmeter and Their Making 44 min
        • Lecture4.4
          Potentiometer and its applications ; Meter Bridge; Post Office Box; Colour Code of Resistors 32 min
      • 5.Capacitor
        6
        • Lecture5.1
          Capacitor and Capacitance; Energy in Capacitor 38 min
        • Lecture5.2
          Capacitive Circuits- Kirchoff’s Laws; Heat Production 01 hour
        • Lecture5.3
          Equivalent Capacitance; Charge on both sides of cap. Plate 52 min
        • Lecture5.4
          Dielectric Strength; Polar and Non-Polar Dielectric; Equivalent Cap. with Dielectric 01 hour
        • Lecture5.5
          Inserting and Removing Dielectric- Work (Fringing Effect), Force; Force between plates of capacitor 38 min
        • Lecture5.6
          Revision Notes Capacitor
      • 6.RC Circuits
        3
        • Lecture6.1
          Maths Needed for RC Circuits, RC circuits-Charging Circuit 19 min
        • Lecture6.2
          RC circuits-Discharging Circuit, Initial & Steady State, Final (Steady) State, Internal Resistance of Capacitor 44 min
        • Lecture6.3
          Revision Notes RC Circuits
      • 7.Magnetism and Moving Charge
        16
        • Lecture7.1
          Introduction, Vector Product, Force Applied by Magnetic Field, Lorentz Force, Velocity Selector 40 min
        • Lecture7.2
          Motion of Charged Particles in Uniform Magnetic Field 40 min
        • Lecture7.3
          Cases of Motion of Charged Particles in Uniform Magnetic Field 56 min
        • Lecture7.4
          Force on a Current Carrying Wire on Uniform B and its Cases, Questions and Solutions 59 min
        • Lecture7.5
          Magnetic Field on Axis of Circular Loop, Magnetic field due to Moving Charge, Magnetic Field due to Current 52 min
        • Lecture7.6
          Magnetic Field due to Straight Wire, Different Methods 40 min
        • Lecture7.7
          Magnetic Field due to Rotating Ring and Spiral 41 min
        • Lecture7.8
          Force between Two Current Carrying Wires 36 min
        • Lecture7.9
          Force between Two Current Carrying Wires 58 min
        • Lecture7.10
          Miscellaneous Questions 55 min
        • Lecture7.11
          Solenoid, Toroid, Magnetic Dipole, Magnetic Dipole Momentum, Magnetic Field of Dipole 54 min
        • Lecture7.12
          Magnetic Dipole in Uniform Magnetic Field, Moving Coil Galvanometer, Torsional Pendulum 01 hour
        • Lecture7.13
          Advanced Questions, Magnetic Dipole and Angular Momentum 56 min
        • Lecture7.14
          Chapter Notes – Magnetism and Moving Charge
        • Lecture7.15
          NCERT Solutions – Magnetism and Moving Charge
        • Lecture7.16
          Revision Notes Magnetism and Moving Charge
      • 8.Magnetism and Matter
        10
        • Lecture8.1
          Magnetic Dipole, Magnetic Properties of Matter, Diamagnetism; Domain Theory of Ferro 47 min
        • Lecture8.2
          Magnetic Properties of Matter in Detail 39 min
        • Lecture8.3
          Magnetization and Magnetic Intensity, Meissner Effect, Variation of Magnetization with Temperature 55 min
        • Lecture8.4
          Hysteresis, Permanent Magnet, Properties of Ferro for Permanent Magnet, Electromagnet 31 min
        • Lecture8.5
          Magnetic Compass, Earth’s Magnetic Field 20 min
        • Lecture8.6
          Bar Magnet, Bar Magnet in Uniform Field 49 min
        • Lecture8.7
          Magnetic Poles, Magnetic Field Lines, Magnetism and Gauss’s Law 32 min
        • Lecture8.8
          Chapter Notes – Magnetism and Matter
        • Lecture8.9
          NCERT Solutions – Magnetism and Matter
        • Lecture8.10
          Revision Notes Magnetism and Matter
      • 9.Electromagnetic Induction
        14
        • Lecture9.1
          Introduction, Magnetic Flux, Motional EMF 01 min
        • Lecture9.2
          Induced Electric Field, Faraday’s Law, Comparison between Electrostatic Electric Field and Induced Electric Field 43 min
        • Lecture9.3
          Induced Current; Faraday’s Law ; Lenz’s Law 56 min
        • Lecture9.4
          Faraday’s Law and its Cases 50 min
        • Lecture9.5
          Advanced Questions on Faraday’s Law 37 min
        • Lecture9.6
          Cases of Current Electricity 59 min
        • Lecture9.7
          Lenz’s Law and Conservation of Energy, Eddy Current, AC Generator, Motor 01 hour
        • Lecture9.8
          Mutual Induction 53 min
        • Lecture9.9
          Self Inductance, Energy in an Inductor 34 min
        • Lecture9.10
          LR Circuit, Decay Circuit 01 hour
        • Lecture9.11
          Initial and Final Analysis of LR Circuit 38 min
        • Lecture9.12
          Chapter Notes – Electromagnetic Induction
        • Lecture9.13
          NCERT Solutions – Electromagnetic Induction
        • Lecture9.14
          Revision Notes Electromagnetic Induction
      • 10.Alternating Current Circuit
        8
        • Lecture10.1
          Introduction, AC/DC Sources, Basic AC Circuits, Average & RMS Value 46 min
        • Lecture10.2
          Phasor Method, Rotating Vector, Adding Phasors, RC Circuit 35 min
        • Lecture10.3
          Examples and Solutions 21 min
        • Lecture10.4
          Power in AC Circuit, Resonance Frequency, Bandwidth and Quality Factor, Transformer 51 min
        • Lecture10.5
          LC Oscillator, Question and Solutions of LC Oscillator, Damped LC Oscillator 53 min
        • Lecture10.6
          Chapter Notes – Alternating Current Circuit
        • Lecture10.7
          NCERT Solutions – Alternating Current Circuit
        • Lecture10.8
          Revision Notes Alternating Current Circuit
      • 11.Electromagnetic Waves
        4
        • Lecture11.1
          Displacement Current; Ampere Maxwell Law 14 min
        • Lecture11.2
          EM Waves; EM Spectrum; Green House Effect; Ozone Layer 36 min
        • Lecture11.3
          Chapter Notes – Electromagnetic Waves
        • Lecture11.4
          Revision Notes Electromagnetic Waves
      • 12.Photoelectric Effect
        5
        • Lecture12.1
          Recalling Basics; Photoelectric Effect 50 min
        • Lecture12.2
          Photo-electric Cell 35 min
        • Lecture12.3
          Photon Flux; Photon Density; Momentum of Photon; Radiation Pressure- Full Absorption, Full Reflection; Dual nature 52 min
        • Lecture12.4
          Chapter Notes – Photoelectric Effect
        • Lecture12.5
          Revision Notes Photoelectric Effect
      • 13.Ray Optics (Part 1)
        12
        • Lecture13.1
          Rays and Beam of Light, Reflection of Light, Angle of Deviation, Image Formation by Plane Mirror 01 hour
        • Lecture13.2
          Field of View, Numerical on Field of Line, Size of Mirror 42 min
        • Lecture13.3
          Curved Mirrors, Terms Related to Curved Mirror, Reflection of Light by Curved Mirror 40 min
        • Lecture13.4
          Image Formation by Concave Mirror, Magnification or Lateral or Transverse Magnification 01 hour
        • Lecture13.5
          Ray Diagrams for Concave Mirror 45 min
        • Lecture13.6
          Image Formation by Convex Mirror; Derivations of Various Formulae used in Concave Mirror and Convex Mirror 01 hour
        • Lecture13.7
          Advanced Optical Systems, Formation of Images with more than one Mirror 24 min
        • Lecture13.8
          Concept of Virtual Object, Formation of Image when Incident ray are Converging, Image Characteristics for Virtual Object, 55 min
        • Lecture13.9
          Newton’s Formula, Longitudinal Magnification 23 min
        • Lecture13.10
          Formation of Image when Two Plane Mirrors kept at an angle and parallel; Formation of Image by two Parallel Mirrors. 43 min
        • Lecture13.11
          Chapter Notes – Ray Optics
        • Lecture13.12
          NCERT Solutions – Ray Optics
      • 14.Ray Optics (Part 2)
        13
        • Lecture14.1
          Refractive Index, Opaque, Transparent, Speed of Light, Relative Refractive Index, Refraction and Snell’s Law, Refraction in Denser and Rarer Medium 42 min
        • Lecture14.2
          Image Formation due to Refraction; Derivation; Refraction and Image formation in Glass Slab 57 min
        • Lecture14.3
          Total Internal Reflection, Critical Angle, Principle of Reversibility 01 hour
        • Lecture14.4
          Application of Total Internal Reflection 45 min
        • Lecture14.5
          Refraction at Curved Surface, Image Formation by Curved Surface, Derivation 56 min
        • Lecture14.6
          Image Formation by Curved Surface, Snell’s Law in Vector Form 01 hour
        • Lecture14.7
          Lens, Various types of Lens, Differentiating between various Lenses; Optical Centre, Derivation of Lens Maker Formula 01 hour
        • Lecture14.8
          Lens Formula, Questions and Answers 39 min
        • Lecture14.9
          Property of Image by Convex and Concave Lens; Lens Location, Minimum Distance Between Real Image and Object 01 hour
        • Lecture14.10
          Power of Lens, Combination of Lens, Autocollimation 35 min
        • Lecture14.11
          Silvering of Lens 44 min
        • Lecture14.12
          Cutting of Lens and Mirror, Vertical Cutting, Horizontal Cutting 49 min
        • Lecture14.13
          Newton’s Law for Lens and Virtual Object 01 hour
      • 15.Ray Optics (Part 3)
        6
        • Lecture15.1
          Prism, Angle of Prism, Reversibility in Prism 51 min
        • Lecture15.2
          Deviation in Prism, Minimum and Maximum Deviation, Asymmetric, Thin Prism, Proof for formula of Thin Prism 59 min
        • Lecture15.3
          Dispersion of Light, Refractive Index, Composition of Light, Dispersion through Prism 01 hour
        • Lecture15.4
          Rainbow Formation, Scattering of Light, Tyndall Effect, Defects of Image, Spherical Defect, Chromatic Defect, Achromatism. 57 min
        • Lecture15.5
          Optical Instruments, The Human Eye, Defects of Eye and its Corrections 01 hour
        • Lecture15.6
          Microscope & Telescope 02 hour
      • 16.Wave Optics
        21
        • Lecture16.1
          Introduction to Wave Optics 11 min
        • Lecture16.2
          Huygens Wave Theory 14 min
        • Lecture16.3
          Huygens Theory of Secondary Wavelets 10 min
        • Lecture16.4
          Law of Reflection by Huygens Theory 10 min
        • Lecture16.5
          Deriving Laws of Refraction by Huygens Wave Theory 10 min
        • Lecture16.6
          Multiple Answer type question on Huygens Theory 41 min
        • Lecture16.7
          Conditions of Constructive and Destructive Interference 22 min
        • Lecture16.8
          Conditions of Constructive and Destructive Interference 06 min
        • Lecture16.9
          Conditions of Constructive and Destructive Interference 23 min
        • Lecture16.10
          Incoherent Sources of Light 38 min
        • Lecture16.11
          Youngs Double Slit Experiment 12 min
        • Lecture16.12
          Fringe Width Positions of Bright and Dark Fringes 15 min
        • Lecture16.13
          Numerical problems on Youngs Double Slit Experiment 11 min
        • Lecture16.14
          Numerical problems on Youngs Double Slit Experiment 19 min
        • Lecture16.15
          Displacement of Interference Pattern 19 min
        • Lecture16.16
          Numerical problems on Displacement of Interference Pattern 28 min
        • Lecture16.17
          Shapes of Fringes 37 min
        • Lecture16.18
          Colour of Thin Films 59 min
        • Lecture16.19
          Interference with White Light 32 min
        • Lecture16.20
          Chapter Notes – Wave Optics
        • Lecture16.21
          NCERT Solutions – Wave Optics
      • 17.Atomic Structure
        6
        • Lecture17.1
          Thomson and Rutherford Model of Atom; Trajectory of Alpha particle; Bohr’s Model ; Hydrogen Like Atom; Energy Levels 58 min
        • Lecture17.2
          Emission Spectra, Absorption Spectra; De Broglie Explanation of Bohr’s 2nd Postulate; Limitations of Bohr’s Model 37 min
        • Lecture17.3
          Momentum Conservation in Photon Emission, Motion of Nucleus, Atomic Collision 58 min
        • Lecture17.4
          Chapter Notes – Atomic Structure
        • Lecture17.5
          NCERT Solutions – Atomic Structure
        • Lecture17.6
          Revision Notes Atomic Structure
      • 18.Nucleus
        6
        • Lecture18.1
          Basics- Size of Nucleus, Nuclear Force, Binding Energy, Mass Defect; Radioactive Decay 01 hour
        • Lecture18.2
          Laws of Radioactive Decay 36 min
        • Lecture18.3
          Nuclear Fission; Nuclear Reactor; Nuclear Fusion- Reaction Inside Sun 30 min
        • Lecture18.4
          Chapter Notes – Nucleus
        • Lecture18.5
          NCERT Solutions – Nucleus
        • Lecture18.6
          Revision Notes Nucleus
      • 19.X-Ray
        4
        • Lecture19.1
          Electromagnetic Spectrum, Thermionic Emission; Coolidge Tube – Process 1 22 min
        • Lecture19.2
          Coolidge Tube – Process 2; Moseley’s Law; Absorption of X-rays in Heavy Metal 39 min
        • Lecture19.3
          Chapter Notes – X-Ray
        • Lecture19.4
          Revision Notes X-Ray
      • 20.Error and Measurement
        2
        • Lecture20.1
          Least Count of Instruments; Mathematical Operation on Data with Random Error 18 min
        • Lecture20.2
          Significant Digits; Significant Digits and Mathematical Operations 30 min
      • 21.Semiconductors
        9
        • Lecture21.1
          Conductor, Semiconductors and Insulators Basics Difference, Energy Band Theory, Si element 21 min
        • Lecture21.2
          Doping and PN Junction 01 hour
        • Lecture21.3
          Diode and Diode as Rectifier 01 hour
        • Lecture21.4
          Voltage Regulator and Zener Diode and Optoelectronic Jn. Devices 01 hour
        • Lecture21.5
          Transistor, pnp, npn, Modes of operation, Input and Output Characteristics, , Current Amplification Factor 01 hour
        • Lecture21.6
          Transistor as Amplifier, Transistor as Switch, Transistor as Oscillator, Digital Gates 01 hour
        • Lecture21.7
          Chapter Notes – Semiconductors
        • Lecture21.8
          NCERT Solutions – Semiconductors
        • Lecture21.9
          Revision Notes Semiconductors
      • 22.Communication Systems
        5
        • Lecture22.1
          Basic working and terms; Antenna; Modulation and Types of Modulation 32 min
        • Lecture22.2
          Amplification Modulation, Transmitter, Receiver, Modulation index 40 min
        • Lecture22.3
          Chapter Notes – Communication Systems
        • Lecture22.4
          NCERT Solutions – Communication Systems
        • Lecture22.5
          Revision Notes Communication Systems

        NCERT Solutions – Communication Systems

        15.1. Which of the following frequencies will be suitable for beyond-the-horizon communication using sky waves?

        (a) 10 kHz

        (b) 10 MHz

        (c) 1 GHz

        (d) 1000 GHz

         

        Answer: (b)

        10 MHz

        For beyond-the-horizon communication, it is necessary for the signal waves to travel a large distance. 10 KHz signals cannot be radiated efficiently because of the antenna size. The high energy signal waves (1GHz − 1000 GHz) penetrate the ionosphere. 10 MHz frequencies get reflected easily from the ionosphere. Hence, signal waves of such frequencies are suitable for beyond-the-horizon communication.

        15.2. Frequencies in the UHF range normally propagate by means of:

        (a) Ground waves.

        (b) Sky waves.

        (c) Surface waves.

        (d) Space waves.

         

         Answer: (d)

        Space waves

        Owing to its high frequency, an ultra high frequency (UHF) wave can neither travel along the trajectory of the ground nor can it get reflected by the ionosphere. The signals having UHF are propagated through line-of-sight communication, which is nothing but space wave propagation.

        15.3. Digital signals

        (i) Do not provide a continuous set of values,

        (ii) Represent values as discrete steps,

        (iii) Can utilize binary system, and

        (iv) Can utilize decimal as well as binary systems.

        Which of the above statements are true?

        (a) (i) and (ii) only

        (b) (ii) and (iii) only

        (c) (i), (ii) and (iii) but not (iv)

        (d) All of (i), (ii), (iii) and (iv).

         

         Answer: (C)

        A digital signal uses the binary (0 and 1) system for transferring message signals. Such a system cannot utilise the decimal system (which corresponds to analogue signals). Digital signals represent discontinuous values.

         

        15.4. Is it necessary for a transmitting antenna to be at the same height as that of the receiving antenna for line-of-sight communication? A TV transmitting antenna is 81m tall. How much service area can it cover if the receiving antenna is at the ground level?

        Answer

        Line-of-sight communication means that there is no physical obstruction between the transmitter and the receiver. In such communications it is not necessary for the transmitting and receiving antennas to be at the same height.

        Height of the given antenna, h = 81 m

        Radius of earth, R = 6.4 × 106 m

        For range, d = (2Rh)½, the service area of the antenna is given by the relation:

        A = πd2

        = π (2Rh)

        = 3.14 × 2 × 6.4 × 106 × 81

        = 3255.55 × 106 m2

        = 3255.55

        ∼ 3256 km2

        15.5. A carrier wave of peak voltage 12 V is used to transmit a message signal. What should be the peak voltage of the modulating signal in order to have a modulation index of 75%?

        Answer

        Amplitude of the carrier wave, Ac = 12 V

        Modulation index, m = 75% = 0.75

        Amplitude of the modulating wave = Am

        Using the relation for modulation index:

        15.6. A modulating signal is a square wave, as shown in Fig. 15.14.

        The carrier wave is given by 

        (i) Sketch the amplitude modulated waveform

        (ii) What is the modulation index?

        Answer

        It can be observed from the given modulating signal that the amplitude of the modulating signal, Am = 1 V

        It is given that the carrier wave c (t) = 2 sin (8πt)

        ∴Amplitude of the carrier wave, Ac = 2 V

        Time period of the modulating signal Tm = 1 s

        The angular frequency of the modulating signal is calculated as:

        The angular frequency of the carrier signal is calculated as:

        From equations (i) and (ii), we get:

        The amplitude modulated waveform of the modulating signal is shown in the following figure.

        (ii)Modulation index, 

        15.7. For an amplitude modulated wave, the maximum amplitude is found to be 10 V while the minimum amplitude is found to be 2 V. Determine the modulation index μ. What would be the value of μ if the minimum amplitude is zero volt?

        Answer

        Maximum amplitude, Amax = 10 V

        Minimum amplitude, Amin = 2 V

        Modulation index μ, is given by the relation:

        15.8.Due to economic reasons, only the upper sideband of an AM wave is transmitted, but at the receiving station, there is a facility for generating the carrier. Show that if a device is available which can multiply two signals, then it is possible to recover the modulating signal at the receiver station.

        Answer

        Let ωc and ωs be the respective frequencies of the carrier and signal waves.

        Signal received at the receiving station, V = V1 cos (ωc + ωs)t

        Instantaneous voltage of the carrier wave, Vin = Vc cos ωct

        At the receiving station, the low-pass filter allows only high frequency signals to pass through it. It obstructs the low frequency signal ωs. Thus, at the receiving station, one can record the modulating signal , which is the signal frequency.

        Prev Chapter Notes – Communication Systems
        Next Revision Notes Communication Systems

        Leave A Reply Cancel reply

        Your email address will not be published. Required fields are marked *

        All Courses

        • Backend
        • Chemistry
        • Chemistry
        • Chemistry
        • Class 08
          • Maths
          • Science
        • Class 09
          • Maths
          • Science
          • Social Studies
        • Class 10
          • Maths
          • Science
          • Social Studies
        • Class 11
          • Chemistry
          • English
          • Maths
          • Physics
        • Class 12
          • Chemistry
          • English
          • Maths
          • Physics
        • CSS
        • English
        • English
        • Frontend
        • General
        • IT & Software
        • JEE Foundation (Class 9 & 10)
          • Chemistry
          • Physics
        • Maths
        • Maths
        • Maths
        • Maths
        • Maths
        • Photography
        • Physics
        • Physics
        • Physics
        • Programming Language
        • Science
        • Science
        • Science
        • Social Studies
        • Social Studies
        • Technology

        Latest Courses

        Class 8 Science

        Class 8 Science

        ₹8,000.00
        Class 8 Maths

        Class 8 Maths

        ₹8,000.00
        Class 9 Science

        Class 9 Science

        ₹10,000.00

        Contact Us

        +91-8287971571

        contact@dronstudy.com

        Company

        • About Us
        • Contact
        • Privacy Policy

        Links

        • Courses
        • Test Series

        Copyright © 2021 DronStudy Pvt. Ltd.

        Login with your site account

        Lost your password?

        Modal title

        Message modal