• Home
  • Courses
  • Online Test
  • Contact
    Have any question?
    +91-8287971571
    contact@dronstudy.com
    Login
    DronStudy
    • Home
    • Courses
    • Online Test
    • Contact

      Class 12 PHYSICS – JEE

      • Home
      • All courses
      • Class 12
      • Class 12 PHYSICS – JEE
      CoursesClass 12PhysicsClass 12 PHYSICS – JEE
      • 1.Electrostatics (1)
        8
        • Lecture1.1
          Charge, Coulombs Law and Coulombs law in Vector form 41 min
        • Lecture1.2
          Electric Field; Electric Field Lines; Field lines due to multiple charges 42 min
        • Lecture1.3
          Charge Distribution; Finding Electric Field due to Different Object 01 hour
        • Lecture1.4
          Solid angle; Area Vector; Electric Flux; Flux of closed surface; Gauss Law 47 min
        • Lecture1.5
          Finding E Using Concept of Gauss law and Flux 01 hour
        • Lecture1.6
          Chapter Notes – Electrostatics (1)
        • Lecture1.7
          NCERT Solutions – Electrostatics
        • Lecture1.8
          Revision Notes Electrostatics
      • 2.Electrostatics (2)
        7
        • Lecture2.1
          Work done by Electrostatic Force; Work done by man in E-Field; Electrostatic Potential Energy 49 min
        • Lecture2.2
          Finding Electric Potential, Equipotential Surface and Motion in Electric Field 01 hour
        • Lecture2.3
          Electric Dipole and Dipole in Uniform and Non-uniform Electric field 01 hour
        • Lecture2.4
          Analysis of charge on conductors; Potential due to induced charge 58 min
        • Lecture2.5
          Conductors with cavity- Case 1: Empty cavity, Case 2: Charge Inside Cavity 41 min
        • Lecture2.6
          Connecting Two Conductors; Grounding of conductor; Electric field just outside conductor; Electrostatic pressure; Self potential Energy 54 min
        • Lecture2.7
          Chapter Notes – Electrostatics (2)
      • 3.Current Electricity (1)
        9
        • Lecture3.1
          Current, Motion of Electrons in Conductor; Temp. Dependence of Resistor 26 min
        • Lecture3.2
          Circuit Theory and Kirchoffs Laws 31 min
        • Lecture3.3
          Some Special Circuits- Series & Parallel Circuits, Open Circuit, Short Circuit 26 min
        • Lecture3.4
          Wheatstone Bridge, Current Antisymmetric 21 min
        • Lecture3.5
          Equivalent Resistance- Series and parallel, Equipotential Points, Wheatstone Bridge 25 min
        • Lecture3.6
          Current Antisymmetric, Infinite Ladder, Circuit Solving, 3D circuits 20 min
        • Lecture3.7
          Chapter Notes – Current Electricity
        • Lecture3.8
          NCERT Solutions – Current Electricity
        • Lecture3.9
          Revision Notes Current Electricity
      • 4.Current Electricity (2)
        4
        • Lecture4.1
          Heating Effect of Current; Rating of Bulb; Fuse 19 min
        • Lecture4.2
          Battery, Maximum power theorem; Ohmic and Non Ohmic Resistance; Superconductor 31 min
        • Lecture4.3
          Galvanometer; Ammeter & Voltmeter and Their Making 44 min
        • Lecture4.4
          Potentiometer and its applications ; Meter Bridge; Post Office Box; Colour Code of Resistors 32 min
      • 5.Capacitor
        6
        • Lecture5.1
          Capacitor and Capacitance; Energy in Capacitor 38 min
        • Lecture5.2
          Capacitive Circuits- Kirchoff’s Laws; Heat Production 01 hour
        • Lecture5.3
          Equivalent Capacitance; Charge on both sides of cap. Plate 52 min
        • Lecture5.4
          Dielectric Strength; Polar and Non-Polar Dielectric; Equivalent Cap. with Dielectric 01 hour
        • Lecture5.5
          Inserting and Removing Dielectric- Work (Fringing Effect), Force; Force between plates of capacitor 38 min
        • Lecture5.6
          Revision Notes Capacitor
      • 6.RC Circuits
        3
        • Lecture6.1
          Maths Needed for RC Circuits, RC circuits-Charging Circuit 19 min
        • Lecture6.2
          RC circuits-Discharging Circuit, Initial & Steady State, Final (Steady) State, Internal Resistance of Capacitor 44 min
        • Lecture6.3
          Revision Notes RC Circuits
      • 7.Magnetism and Moving Charge
        16
        • Lecture7.1
          Introduction, Vector Product, Force Applied by Magnetic Field, Lorentz Force, Velocity Selector 40 min
        • Lecture7.2
          Motion of Charged Particles in Uniform Magnetic Field 40 min
        • Lecture7.3
          Cases of Motion of Charged Particles in Uniform Magnetic Field 56 min
        • Lecture7.4
          Force on a Current Carrying Wire on Uniform B and its Cases, Questions and Solutions 59 min
        • Lecture7.5
          Magnetic Field on Axis of Circular Loop, Magnetic field due to Moving Charge, Magnetic Field due to Current 52 min
        • Lecture7.6
          Magnetic Field due to Straight Wire, Different Methods 40 min
        • Lecture7.7
          Magnetic Field due to Rotating Ring and Spiral 41 min
        • Lecture7.8
          Force between Two Current Carrying Wires 36 min
        • Lecture7.9
          Force between Two Current Carrying Wires 58 min
        • Lecture7.10
          Miscellaneous Questions 55 min
        • Lecture7.11
          Solenoid, Toroid, Magnetic Dipole, Magnetic Dipole Momentum, Magnetic Field of Dipole 54 min
        • Lecture7.12
          Magnetic Dipole in Uniform Magnetic Field, Moving Coil Galvanometer, Torsional Pendulum 01 hour
        • Lecture7.13
          Advanced Questions, Magnetic Dipole and Angular Momentum 56 min
        • Lecture7.14
          Chapter Notes – Magnetism and Moving Charge
        • Lecture7.15
          NCERT Solutions – Magnetism and Moving Charge
        • Lecture7.16
          Revision Notes Magnetism and Moving Charge
      • 8.Magnetism and Matter
        10
        • Lecture8.1
          Magnetic Dipole, Magnetic Properties of Matter, Diamagnetism; Domain Theory of Ferro 47 min
        • Lecture8.2
          Magnetic Properties of Matter in Detail 39 min
        • Lecture8.3
          Magnetization and Magnetic Intensity, Meissner Effect, Variation of Magnetization with Temperature 55 min
        • Lecture8.4
          Hysteresis, Permanent Magnet, Properties of Ferro for Permanent Magnet, Electromagnet 31 min
        • Lecture8.5
          Magnetic Compass, Earth’s Magnetic Field 20 min
        • Lecture8.6
          Bar Magnet, Bar Magnet in Uniform Field 49 min
        • Lecture8.7
          Magnetic Poles, Magnetic Field Lines, Magnetism and Gauss’s Law 32 min
        • Lecture8.8
          Chapter Notes – Magnetism and Matter
        • Lecture8.9
          NCERT Solutions – Magnetism and Matter
        • Lecture8.10
          Revision Notes Magnetism and Matter
      • 9.Electromagnetic Induction
        14
        • Lecture9.1
          Introduction, Magnetic Flux, Motional EMF 01 min
        • Lecture9.2
          Induced Electric Field, Faraday’s Law, Comparison between Electrostatic Electric Field and Induced Electric Field 43 min
        • Lecture9.3
          Induced Current; Faraday’s Law ; Lenz’s Law 56 min
        • Lecture9.4
          Faraday’s Law and its Cases 50 min
        • Lecture9.5
          Advanced Questions on Faraday’s Law 37 min
        • Lecture9.6
          Cases of Current Electricity 59 min
        • Lecture9.7
          Lenz’s Law and Conservation of Energy, Eddy Current, AC Generator, Motor 01 hour
        • Lecture9.8
          Mutual Induction 53 min
        • Lecture9.9
          Self Inductance, Energy in an Inductor 34 min
        • Lecture9.10
          LR Circuit, Decay Circuit 01 hour
        • Lecture9.11
          Initial and Final Analysis of LR Circuit 38 min
        • Lecture9.12
          Chapter Notes – Electromagnetic Induction
        • Lecture9.13
          NCERT Solutions – Electromagnetic Induction
        • Lecture9.14
          Revision Notes Electromagnetic Induction
      • 10.Alternating Current Circuit
        8
        • Lecture10.1
          Introduction, AC/DC Sources, Basic AC Circuits, Average & RMS Value 46 min
        • Lecture10.2
          Phasor Method, Rotating Vector, Adding Phasors, RC Circuit 35 min
        • Lecture10.3
          Examples and Solutions 21 min
        • Lecture10.4
          Power in AC Circuit, Resonance Frequency, Bandwidth and Quality Factor, Transformer 51 min
        • Lecture10.5
          LC Oscillator, Question and Solutions of LC Oscillator, Damped LC Oscillator 53 min
        • Lecture10.6
          Chapter Notes – Alternating Current Circuit
        • Lecture10.7
          NCERT Solutions – Alternating Current Circuit
        • Lecture10.8
          Revision Notes Alternating Current Circuit
      • 11.Electromagnetic Waves
        4
        • Lecture11.1
          Displacement Current; Ampere Maxwell Law 14 min
        • Lecture11.2
          EM Waves; EM Spectrum; Green House Effect; Ozone Layer 36 min
        • Lecture11.3
          Chapter Notes – Electromagnetic Waves
        • Lecture11.4
          Revision Notes Electromagnetic Waves
      • 12.Photoelectric Effect
        5
        • Lecture12.1
          Recalling Basics; Photoelectric Effect 50 min
        • Lecture12.2
          Photo-electric Cell 35 min
        • Lecture12.3
          Photon Flux; Photon Density; Momentum of Photon; Radiation Pressure- Full Absorption, Full Reflection; Dual nature 52 min
        • Lecture12.4
          Chapter Notes – Photoelectric Effect
        • Lecture12.5
          Revision Notes Photoelectric Effect
      • 13.Ray Optics (Part 1)
        12
        • Lecture13.1
          Rays and Beam of Light, Reflection of Light, Angle of Deviation, Image Formation by Plane Mirror 01 hour
        • Lecture13.2
          Field of View, Numerical on Field of Line, Size of Mirror 42 min
        • Lecture13.3
          Curved Mirrors, Terms Related to Curved Mirror, Reflection of Light by Curved Mirror 40 min
        • Lecture13.4
          Image Formation by Concave Mirror, Magnification or Lateral or Transverse Magnification 01 hour
        • Lecture13.5
          Ray Diagrams for Concave Mirror 45 min
        • Lecture13.6
          Image Formation by Convex Mirror; Derivations of Various Formulae used in Concave Mirror and Convex Mirror 01 hour
        • Lecture13.7
          Advanced Optical Systems, Formation of Images with more than one Mirror 24 min
        • Lecture13.8
          Concept of Virtual Object, Formation of Image when Incident ray are Converging, Image Characteristics for Virtual Object, 55 min
        • Lecture13.9
          Newton’s Formula, Longitudinal Magnification 23 min
        • Lecture13.10
          Formation of Image when Two Plane Mirrors kept at an angle and parallel; Formation of Image by two Parallel Mirrors. 43 min
        • Lecture13.11
          Chapter Notes – Ray Optics
        • Lecture13.12
          NCERT Solutions – Ray Optics
      • 14.Ray Optics (Part 2)
        13
        • Lecture14.1
          Refractive Index, Opaque, Transparent, Speed of Light, Relative Refractive Index, Refraction and Snell’s Law, Refraction in Denser and Rarer Medium 42 min
        • Lecture14.2
          Image Formation due to Refraction; Derivation; Refraction and Image formation in Glass Slab 57 min
        • Lecture14.3
          Total Internal Reflection, Critical Angle, Principle of Reversibility 01 hour
        • Lecture14.4
          Application of Total Internal Reflection 45 min
        • Lecture14.5
          Refraction at Curved Surface, Image Formation by Curved Surface, Derivation 56 min
        • Lecture14.6
          Image Formation by Curved Surface, Snell’s Law in Vector Form 01 hour
        • Lecture14.7
          Lens, Various types of Lens, Differentiating between various Lenses; Optical Centre, Derivation of Lens Maker Formula 01 hour
        • Lecture14.8
          Lens Formula, Questions and Answers 39 min
        • Lecture14.9
          Property of Image by Convex and Concave Lens; Lens Location, Minimum Distance Between Real Image and Object 01 hour
        • Lecture14.10
          Power of Lens, Combination of Lens, Autocollimation 35 min
        • Lecture14.11
          Silvering of Lens 44 min
        • Lecture14.12
          Cutting of Lens and Mirror, Vertical Cutting, Horizontal Cutting 49 min
        • Lecture14.13
          Newton’s Law for Lens and Virtual Object 01 hour
      • 15.Ray Optics (Part 3)
        6
        • Lecture15.1
          Prism, Angle of Prism, Reversibility in Prism 51 min
        • Lecture15.2
          Deviation in Prism, Minimum and Maximum Deviation, Asymmetric, Thin Prism, Proof for formula of Thin Prism 59 min
        • Lecture15.3
          Dispersion of Light, Refractive Index, Composition of Light, Dispersion through Prism 01 hour
        • Lecture15.4
          Rainbow Formation, Scattering of Light, Tyndall Effect, Defects of Image, Spherical Defect, Chromatic Defect, Achromatism. 57 min
        • Lecture15.5
          Optical Instruments, The Human Eye, Defects of Eye and its Corrections 01 hour
        • Lecture15.6
          Microscope & Telescope 02 hour
      • 16.Wave Optics
        21
        • Lecture16.1
          Introduction to Wave Optics 11 min
        • Lecture16.2
          Huygens Wave Theory 14 min
        • Lecture16.3
          Huygens Theory of Secondary Wavelets 10 min
        • Lecture16.4
          Law of Reflection by Huygens Theory 10 min
        • Lecture16.5
          Deriving Laws of Refraction by Huygens Wave Theory 10 min
        • Lecture16.6
          Multiple Answer type question on Huygens Theory 41 min
        • Lecture16.7
          Conditions of Constructive and Destructive Interference 22 min
        • Lecture16.8
          Conditions of Constructive and Destructive Interference 06 min
        • Lecture16.9
          Conditions of Constructive and Destructive Interference 23 min
        • Lecture16.10
          Incoherent Sources of Light 38 min
        • Lecture16.11
          Youngs Double Slit Experiment 12 min
        • Lecture16.12
          Fringe Width Positions of Bright and Dark Fringes 15 min
        • Lecture16.13
          Numerical problems on Youngs Double Slit Experiment 11 min
        • Lecture16.14
          Numerical problems on Youngs Double Slit Experiment 19 min
        • Lecture16.15
          Displacement of Interference Pattern 19 min
        • Lecture16.16
          Numerical problems on Displacement of Interference Pattern 28 min
        • Lecture16.17
          Shapes of Fringes 37 min
        • Lecture16.18
          Colour of Thin Films 59 min
        • Lecture16.19
          Interference with White Light 32 min
        • Lecture16.20
          Chapter Notes – Wave Optics
        • Lecture16.21
          NCERT Solutions – Wave Optics
      • 17.Atomic Structure
        6
        • Lecture17.1
          Thomson and Rutherford Model of Atom; Trajectory of Alpha particle; Bohr’s Model ; Hydrogen Like Atom; Energy Levels 58 min
        • Lecture17.2
          Emission Spectra, Absorption Spectra; De Broglie Explanation of Bohr’s 2nd Postulate; Limitations of Bohr’s Model 37 min
        • Lecture17.3
          Momentum Conservation in Photon Emission, Motion of Nucleus, Atomic Collision 58 min
        • Lecture17.4
          Chapter Notes – Atomic Structure
        • Lecture17.5
          NCERT Solutions – Atomic Structure
        • Lecture17.6
          Revision Notes Atomic Structure
      • 18.Nucleus
        6
        • Lecture18.1
          Basics- Size of Nucleus, Nuclear Force, Binding Energy, Mass Defect; Radioactive Decay 01 hour
        • Lecture18.2
          Laws of Radioactive Decay 36 min
        • Lecture18.3
          Nuclear Fission; Nuclear Reactor; Nuclear Fusion- Reaction Inside Sun 30 min
        • Lecture18.4
          Chapter Notes – Nucleus
        • Lecture18.5
          NCERT Solutions – Nucleus
        • Lecture18.6
          Revision Notes Nucleus
      • 19.X-Ray
        4
        • Lecture19.1
          Electromagnetic Spectrum, Thermionic Emission; Coolidge Tube – Process 1 22 min
        • Lecture19.2
          Coolidge Tube – Process 2; Moseley’s Law; Absorption of X-rays in Heavy Metal 39 min
        • Lecture19.3
          Chapter Notes – X-Ray
        • Lecture19.4
          Revision Notes X-Ray
      • 20.Error and Measurement
        2
        • Lecture20.1
          Least Count of Instruments; Mathematical Operation on Data with Random Error 18 min
        • Lecture20.2
          Significant Digits; Significant Digits and Mathematical Operations 30 min
      • 21.Semiconductors
        9
        • Lecture21.1
          Conductor, Semiconductors and Insulators Basics Difference, Energy Band Theory, Si element 21 min
        • Lecture21.2
          Doping and PN Junction 01 hour
        • Lecture21.3
          Diode and Diode as Rectifier 01 hour
        • Lecture21.4
          Voltage Regulator and Zener Diode and Optoelectronic Jn. Devices 01 hour
        • Lecture21.5
          Transistor, pnp, npn, Modes of operation, Input and Output Characteristics, , Current Amplification Factor 01 hour
        • Lecture21.6
          Transistor as Amplifier, Transistor as Switch, Transistor as Oscillator, Digital Gates 01 hour
        • Lecture21.7
          Chapter Notes – Semiconductors
        • Lecture21.8
          NCERT Solutions – Semiconductors
        • Lecture21.9
          Revision Notes Semiconductors
      • 22.Communication Systems
        5
        • Lecture22.1
          Basic working and terms; Antenna; Modulation and Types of Modulation 32 min
        • Lecture22.2
          Amplification Modulation, Transmitter, Receiver, Modulation index 40 min
        • Lecture22.3
          Chapter Notes – Communication Systems
        • Lecture22.4
          NCERT Solutions – Communication Systems
        • Lecture22.5
          Revision Notes Communication Systems

        Chapter Notes – Magnetism and Matter

        The total number of lines of force per unit area due to magnetizing field and due to the field induced in the substance is called flux density (B), the unit in which B is measured is Wb/m2.
        The force experienced by a unit north pole of strength 1 Wb placed at a point in a magnetic field is a measure of the magnetic field intensity due to a pole of strength m at a distance r and is given by the following expression

        B⃗ =μ4πmr2r^ Wb/m2

        where μ is the absolute permeability of the medium and is expressed as μ=μ0×μr
        where μr is relative permeability of the material and μ0 is the permeability of the free space or air and is taken as 4π×10−7Wb/A.m.

        Magnetic field strength or Magnetizing field

        The magnetic field strength or magnetizing field is given by H⃗ =B⃗ μ A/m and is independent of the medium.
        For a coil having n number of turns per unit length and io as the (true) current in the winding then
        H=nio (ampere-turn/meter)
        This value of H is independent of the core material.

        Intensity of Magnetization (I or J)

        The measure of the magnetization of a magnetized specimen is called intensity of magnetization. It is defined as the magnetic moment per unit volume.

        Thus,        I=magneticmomentvolume
        As normally the specimen is small its magnetization can be supposed to be uniform. If the specimen is of uniform cross-section a, magnetic length 2l, and pole strength is m, then

        M=m×2l and v=a×2l
        ⸫   I=m×2la×2l=ma Wb/m2

        Thus intensity of magnetization is given as pole strength per unit area developed. Its unit is ampere-turn/meter.

        Magnetic Susceptibility

        The magnetic susceptibility (χ) of a specimen measures the ease with which the specimen can be magnetized and can be defined as the ratio of the intensity of magnetization induced in it and the magnetizing field i.e.
        χ=IH

        Magnetic Permeability

        When a magnetic material is placed in a magnetic field, due to induction it acquires magnetism. The lines of force of the magnetizing field concentrate inside the material and it results in the magnetizing of the material. The measure of the degree to which the lines of force can penetrate or permeate the medium is called absolute permeability of the medium and denoted by μa. The permeability is defined as the ratio of the magnetic induction B in the medium to the magnetizing field H i.e.

        μa=μ0μr=B/H

        When a magnetic material of cross-sectional area A and relative permeability μr is placed in a uniform field H, two types of lines of induction pass through it, one due to the magnetizing field H and the other due to the material itself being magnetized by induction. Thus the total flux density B will be given by
        B=μoH+μoI
        As  μa=μoμr=B/H
        ⸫   BH=μoH+μoIH=μo+μoIH
        or   μoμr=μo+μoIH
        or   μr=1+χ   or   μaμo=1+χ

        Para, Dia, Ferro-Magnetic Substances

        Magnetic substances are substances which upon being introduced into an external magnetic field, change so that they themselves become source of an additional magnetic field. Based on their magnetic behaviour substances can be classified into the following three categories.

        Paramagnetic Substances

        The substances which when placed in a magnetic field acquires a feeble magnetization in the same sense as the applied field are called paramagnetic substances. The examples are platinum, aluminum, manganese, chromium, copper sulphate, iron or nickel salt solutions and crown glass.
        Their properties can be summarized as
        (i) Such substances in non-uniform magnetic field, experience an attractive force towards the stronger part of the field.
        (ii) The permeability m for a paramagnetic substance is slightly greater than one
        (iii) The magnetic susceptibility is small positive  value
        (iv) For a given temperature χ does not change with variation in H.
        (v) The susceptibility varies inversely as the absolute temperature and at higher temperature its value becomes negative.

        Diamagnetic substances

        The substances, which when placed in a magnetic field acquire feeble magnetization in a direction opposite to that of the applied field are called diamagnetic substances. The examples are bismuth, antimony, water, alcohol and hydrogen. These substances exhibit the following properties.
        (i) These substances are repelled by strong magnetic field.
        (ii) The permeability μ for diamagnetic substance is less than one but positive.
        (iii) Susceptibility for diamagnetic has a small negative value. This value does not vary with field or temperature.
        (iv) A diamagnetic substance reduces the flux density B.

        Ferromagnetic Substance

        Such substances acquire high degree of magnetization in the same sense as the applied magnetic field. The example are: iron, steel, nickel and cobalt. Ferromagnetic substances exhibit the following properties:
        (i) They have permeability of the order of hundreds and thousands.
        (ii) Susceptibility is also very large and positive.
        (iii) For small values of H susceptibility, remains constant and for moderate value of H increases rapidly with H and for large value attains a constant value.
        (iv) They are attracted even by weak magnet.
        (v) As temperature increases the value of χ decreases.  Above certain temperature ferromagnetic become ordinary paramagnetics and this temperature is called curie temperature (χ∝1T is called curie law). For iron, steel and nickel the curie point is 1000oC, 770oC and 360oC respectively.

        Hysteresis Loop

        If we take a ferromagnetic material in completely demagnetized state and make it to undergo through a cycle of magnetization in which H is increased from zero to a maximum value Hmax, then decreases to zero, then reversed and again taken to –Hmax, and finally brought back to zero. The variation of B with respect to H can be represented by a closed Hysteresis loop as shown in figure.To get this graph measure B and H and plot these values. Increase H from zero to Hmax and draw the cruve Oa (the maximum value is known as saturation value), this is the normal magnetization curve. Now decrease H from Hmax to zero. The induction density B will not fall as rapidly as it increases and will fall back to b rather than zero giving ab as the back trace of Oa. Therefore even when the magnetizing force is made zero or removed, the iron is still magnetic and the flux density Ob is called residual magnetism or retentivity.
        Now reverse the magnetizing force H. The value of B becomes zero at point c at which the substance is no longer a magnet. Now H is increased to -Hmax and graph cd is obtained. Change –Hmax­ to zero  and then to Hmax again curve dfa is obtained. This lagging of the flux density B with respect to the magnetizing force H is called hysteresis and the close loop graph is known as hysteresis loop. The value of H required to destroy the residual magnetism is called the coercivity which is represented by Oc.

        Energy Loss Due to Hysteresis

        To produce a magnetic field a certain amount of energy has to be supplied. This energy is stored in free space where field is established and is returned to circuit when field collapses.
        However in case of ferromagnetic substances not all the energy supplied can be returned; part of it is lost in form of heat etc. If the magnetization is carried through a complete cycle, the energy lost is proportional to the area of the hysteresis loop.
        When a magnetic material is taken round cycle, there is an energy loss per unit volume of the material given by the area B-H curve.

        Properties of Soft and Hard Materials

        The shape of the B-H curve depends upon the ferromagnetic substance as shown in figure i.e. it is the characteristic of the substance. From the following figure it can be obtained.
        (i) The susceptibility is more for soft materials than for hard material.
        (ii) Permeability is more for soft materials than for hard materials.
        (iii) Soft materials have greater retentivity as compared to hard materials.
        (iv) Hysteresis loss for soft materials is less than that of hard materials.

        Earth’s Magnetic Field  (Terrestial Magnetism)

        The fact that a freely suspended magnetic compass needle or a bar magnet orients itself roughly along the geographical North-South axis of the earth indicates that there is a magnetic field around the earth. This field is due to circulating electric currents (motion of charged ions of molted substances inside the earth) deep within its interior. We can picture this field as due to a fictitious magnetic dipole deep inside the earth. The earth will not behave like a magnet if it stops rotating.
        Components of Earth’s Magnetic Field
        Following are three main components of earth’s magnetic field.

        Angle of Declination (θ)
        A vertical plane passing through N-S line of a freely suspended magnet is called magnetic meridian and the vertical plane passing through the geographical North-South direction is called geographical meridian. The angle of declination is defined at a place as the angle between magnetic meridian and geographical meridian as shown in figure.
        Angle of Dip or Inclination (δ
        )
        The total intensity of earth’s magnetic field varies in magnitude as well as in direction from place to place. The angle which the resultant earth’s magnetic field makes with the horizontal line in the magnetic meridian is called magnetic dip or inclination. For measuring this angle we use dip circle and at poles δ=900 and at equator δ=0. (see fig.).

        Horizontal Component
        The resultant magnetic field due to earth Be can be resolved into two components (i) horizontal component (H), (ii) vertical component (V). From figure the horizontal component of earths magnetic field is the component of total intensity of earths magnetic field in the horizontal direction in magnetic meridian. i.e.

        H=Becosδ   and V=Besinδ

        Prev Magnetic Poles, Magnetic Field Lines, Magnetism and Gauss’s Law
        Next NCERT Solutions – Magnetism and Matter

        Leave A Reply Cancel reply

        Your email address will not be published. Required fields are marked *

        All Courses

        • Backend
        • Chemistry
        • Chemistry
        • Chemistry
        • Class 08
          • Maths
          • Science
        • Class 09
          • Maths
          • Science
          • Social Studies
        • Class 10
          • Maths
          • Science
          • Social Studies
        • Class 11
          • Chemistry
          • English
          • Maths
          • Physics
        • Class 12
          • Chemistry
          • English
          • Maths
          • Physics
        • CSS
        • English
        • English
        • Frontend
        • General
        • IT & Software
        • JEE Foundation (Class 9 & 10)
          • Chemistry
          • Physics
        • Maths
        • Maths
        • Maths
        • Maths
        • Maths
        • Photography
        • Physics
        • Physics
        • Physics
        • Programming Language
        • Science
        • Science
        • Science
        • Social Studies
        • Social Studies
        • Technology

        Latest Courses

        Class 8 Science

        Class 8 Science

        ₹8,000.00
        Class 8 Maths

        Class 8 Maths

        ₹8,000.00
        Class 9 Science

        Class 9 Science

        ₹10,000.00

        Contact Us

        +91-8287971571

        contact@dronstudy.com

        Company

        • About Us
        • Contact
        • Privacy Policy

        Links

        • Courses
        • Test Series

        Copyright © 2021 DronStudy Pvt. Ltd.

        Login with your site account

        Lost your password?

        Modal title

        Message modal