• Home
  • Courses
  • Online Test
  • Contact
    Have any question?
    +91-8287971571
    contact@dronstudy.com
    Login
    DronStudy
    • Home
    • Courses
    • Online Test
    • Contact

      Class 9 Maths

      • Home
      • All courses
      • Class 09
      • Class 9 Maths
      CoursesClass 09MathsClass 9 Maths
      • 1.Number System
        14
        • Lecture1.1
          Numbers and its Classification, Rational Number and its Representation on the Number Line 50 min
        • Lecture1.2
          Decimal Representation of Rational Number and Conversion of Decimal Number into Rational Number 01 hour
        • Lecture1.3
          Representation of Decimal Number on Number Line, Finding Irrational Numbers Between Given Two Numbers 46 min
        • Lecture1.4
          Representing Irrational Number on the Number Line 41 min
        • Lecture1.5
          Rationalisation 54 min
        • Lecture1.6
          Introduction to Exponents, Laws of Exponents, BODMAS Rule 41 min
        • Lecture1.7
          Integral Exponents of Real Numbers 57 min
        • Lecture1.8
          Integral Exponents of Real Numbers and Solving Equation for x 01 hour
        • Lecture1.9
          Rational Exponents of Real Numbers 52 min
        • Lecture1.10
          Examples Based on Rational Exponents of Real Numbers 30 min
        • Lecture1.11
          Chapter Notes – Number System
        • Lecture1.12
          NCERT Solutions – Number System Exercise 1.1 – 1.6
        • Lecture1.13
          R D Sharma Solutions Number System
        • Lecture1.14
          Revision Notes – Number System
      • 2.Polynomials
        10
        • Lecture2.1
          Introduction to Polynomials and Some Basics Questions 58 min
        • Lecture2.2
          Value of Polynomial, Zeroes of Polynomial and Relationship between Zeroes and Coefficient of Linear Equation 01 hour
        • Lecture2.3
          Division of Polynomials and Division Algorithm and Remainder Theorem 51 min
        • Lecture2.4
          Factorising by Spliting Method 01 hour
        • Lecture2.5
          Factorisation By Different Methods and Factor Theorem 27 min
        • Lecture2.6
          Factorisation of Polynomial by Using Algebric Identities 01 hour
        • Lecture2.7
          Chapter Notes – Polynomials
        • Lecture2.8
          NCERT Solutions – Polynomials Exercise 2.1 – 2.5
        • Lecture2.9
          R S Aggarwal Solutions Polynomials
        • Lecture2.10
          Revision Notes Polynomials
      • 3.Coordinate Geometry
        8
        • Lecture3.1
          Representation of Position on Number Line, Finding the location by Using the Axis 01 hour
        • Lecture3.2
          Quadrant, Coordinates of Point on Axis, Distance from Axis 01 hour
        • Lecture3.3
          Finding the Area of Triangle and Rectangle and Mirror Image of Point On Axis 57 min
        • Lecture3.4
          Chapter Notes – Coordinate Geometry
        • Lecture3.5
          NCERT Solutions – Coordinate Geometry Exercise 3.1 – 3.3
        • Lecture3.6
          R D Sharma Solutions Coordinate Geometry
        • Lecture3.7
          R S Aggarwal Solutions Coordinate Geometry
        • Lecture3.8
          Revision Notes Coordinate Geometry
      • 4.Linear Equations
        8
        • Lecture4.1
          Introduction of Linear Equation in Two Variables and Graphical Representation 01 hour
        • Lecture4.2
          Example to find the value of Constant and Graph of Linear Equation in Two Variables 57 min
        • Lecture4.3
          Equations of lines Parallel to the x-axis and y-axis 46 min
        • Lecture4.4
          Chapter Notes – Linear Equations
        • Lecture4.5
          NCERT Solutions – Linear Equations Exercise 4.1 – 4.4
        • Lecture4.6
          R D Sharma Solutions Linear Equations
        • Lecture4.7
          R S Aggarwal Solutions Linear Equations
        • Lecture4.8
          Revision Notes Linear Equations
      • 5.Euclid's Geometry
        7
        • Lecture5.1
          Euclid’s Definitions and Euclid’s Axioms 32 min
        • Lecture5.2
          Eulcid’s Postulates and Playfair’s Axiom 37 min
        • Lecture5.3
          Chapter Notes – Euclid’s Geometry
        • Lecture5.4
          NCERT Solutions – Euclid’s Geometry Exercise 5.1 5.2
        • Lecture5.5
          R D Sharma Solutions Euclid’s Geometry
        • Lecture5.6
          R S Aggarwal Solutions Euclid’s Geometry
        • Lecture5.7
          Revision Notes Euclid’s Geometry
      • 6.Lines and Angles
        10
        • Lecture6.1
          Introduction to Lines and Angles, Types of Angle and Axioms 01 hour
        • Lecture6.2
          Vertically opposite Angles and Angle bisector 46 min
        • Lecture6.3
          Angle made by a transversal with two Lines and Parallel Lines 01 hour
        • Lecture6.4
          Lines Parallel to same Line; Exterior angle of a triangle; Angle Sum property of a Triangle 52 min
        • Lecture6.5
          Angle Sum Property of Triangle Including Interior and Exterior Angles 01 hour
        • Lecture6.6
          Chapter Notes – Lines and Angles
        • Lecture6.7
          NCERT Solutions – Lines and Angles Exercise 6.1 – 6.3
        • Lecture6.8
          R D Sharma Solutions Lines and Angles
        • Lecture6.9
          R S Aggarwal Solutions Lines and Angles
        • Lecture6.10
          Revision Notes Lines and Angles
      • 7.Triangles
        11
        • Lecture7.1
          Introduction, Types of Triangle, Altitude & Median of Triangle, Congruences, SAS criterion of Congruence 42 min
        • Lecture7.2
          Questions Based on SAS Criterion 01 hour
        • Lecture7.3
          ASA Criterion of Congruence and Its based Questions 42 min
        • Lecture7.4
          Questions Based on AAS and SSS Criterion 29 min
        • Lecture7.5
          RHS Criterion of Congruence and Its based Questions, Questions Based on Multiple Criterion 01 hour
        • Lecture7.6
          Inequalities of Triangle 42 min
        • Lecture7.7
          Inequalities of Triangle cont., Distance Between a line and The Point, Miscellaneous Questions 48 min
        • Lecture7.8
          Chapter Notes – Triangles
        • Lecture7.9
          NCERT Solutions – Triangles Exercise 7.1 – 7.5
        • Lecture7.10
          R D Sharma Solutions Triangles
        • Lecture7.11
          Revision Notes Triangles
      • 8.Quadrilaterals
        13
        • Lecture8.1
          Congruence of Triangles- SAS Congruence Criteria, ASA Congruence Criteria, SSS Congruence Criteria, RHS Congruence Criteria; Types of Quadrilateral- Parallelogram, Rectangle, Rhombus, Square, Trapezium, Kite 01 hour
        • Lecture8.2
          Theorem 1; Properties of parallelogram- Theorem 2, Theorem 3; 01 hour
        • Lecture8.3
          Theorem 4; Theorem 5; 24 min
        • Lecture8.4
          Conditions for a Quadrilateral to be a parallelogram- Theorem 6 01 hour
        • Lecture8.5
          Theorem 8 01 hour
        • Lecture8.6
          Theorem 9 51 min
        • Lecture8.7
          Theorem 9(Mid-point Theorem); 01 hour
        • Lecture8.8
          Theorem 10 27 min
        • Lecture8.9
          Chapter Notes – Quadrilaterals
        • Lecture8.10
          NCERT Solutions – Quadrilaterals Exercise 8.1 8.2
        • Lecture8.11
          R D Sharma Solutions Quadrilaterals
        • Lecture8.12
          R S Aggarwal Solutions Quadrilaterals
        • Lecture8.13
          Revision Notes Quadrilaterals
      • 9.Area of Parallelogram
        11
        • Lecture9.1
          Parallelograms on the Same Base and between the Same Parallels; A Diagonal of a parallelogram divides it into two triangles of Equal Area 57 min
        • Lecture9.2
          Questions based on parallelogram and Triangle are on same base & parallel lines and Area of Triangle 01 hour
        • Lecture9.3
          Triangles on the same Base and between the same Parallels 56 min
        • Lecture9.4
          Miscellaneous Questions Based on Triangles on the same Base and between the same Parallels 54 min
        • Lecture9.5
          Sums Based on Median of a Triangle 52 min
        • Lecture9.6
          Two Triangles on the same Base and equal Area lie b/w the same parallel 01 hour
        • Lecture9.7
          Summary of All Concepts and Miscellaneous Questions 56 min
        • Lecture9.8
          Chapter Notes – Area of Parallelogram
        • Lecture9.9
          NCERT Solutions – Area of Parallelogram Exercise 9.1 – 9.4
        • Lecture9.10
          R D Sharma Solutions Area of Parallelogram
        • Lecture9.11
          Revision Notes Area of Parallelogram
      • 10.Constructions
        7
        • Lecture10.1
          Construction of Perpendicular Bisector of a Line Segment, Different Angles and Angle bisector 42 min
        • Lecture10.2
          Construction of Different types of Triangle 43 min
        • Lecture10.3
          Chapter Notes – Constructions
        • Lecture10.4
          NCERT Solutions – Constructions Exercise
        • Lecture10.5
          R D Sharma Solutions Constructions
        • Lecture10.6
          R S Aggarwal Solutions Constructions
        • Lecture10.7
          Revision Notes Constructions
      • 11.Circles
        11
        • Lecture11.1
          Introduction, Important Terms related to circle, Theorem-1, 2, 3 and 4 01 hour
        • Lecture11.2
          Problems Solving 48 min
        • Lecture11.3
          Problems Based on Parallel Chords, Common Chord of Circles 01 hour
        • Lecture11.4
          Problems Based on Concentric Circles, Triangle in Circle 41 min
        • Lecture11.5
          Equal Chords and Their Distance, Theorem-5, 6, 7, 8 01 hour
        • Lecture11.6
          Circle Through Points, Theorem-9, Arc of a Circle, Theorem-10 01 hour
        • Lecture11.7
          Chapter Notes – Circles
        • Lecture11.8
          NCERT Solutions – Circles Exercise
        • Lecture11.9
          R D Sharma Solutions Circles
        • Lecture11.10
          R S Aggarwal Solutions Circles
        • Lecture11.11
          Revision Notes Circles
      • 12.Heron's Formula
        8
        • Lecture12.1
          Introduction of Heron’s Formula; Area of Different Triangles 01 hour
        • Lecture12.2
          Area of Triangles Using Heron’s Formula (Type-1 level-1 and 2) 53 min
        • Lecture12.3
          Area of Quadrilaterals Using Heron’s Formula (Type-2 level-1) 32 min
        • Lecture12.4
          Area of Quadrilaterals Using Heron’s Formula (Type-2 level-2) 38 min
        • Lecture12.5
          Chapter Notes – Heron’s Formula
        • Lecture12.6
          NCERT Solutions – Heron’s Formula Exercise 12.1 12.2
        • Lecture12.7
          R D Sharma Solutions Heron’s Formula
        • Lecture12.8
          Revision Notes Heron’s Formula
      • 13.Surface Area and Volume
        16
        • Lecture13.1
          Introduction, Surface Area of Cube, Cuboid, Cylinder, Hollow cylinder, Cone, Sphere 40 min
        • Lecture13.2
          Type-1: Surface Area and Volume of Cube and Cuboid 27 min
        • Lecture13.3
          Level-2, Question based on Cube and Cuboid, Level-1 Questions based on Cylinder 28 min
        • Lecture13.4
          Level-2 Questions based on Cylinder, Type-3 Surface Area and Volume of Right Circular Cone (Level-1) 25 min
        • Lecture13.5
          Level-2 Questions based on Right Circular Cone, Level-1& 2 Questions Based on Sphere & Hemisphere 27 min
        • Lecture13.6
          Type-5 Short Answer Types Questions, 12 min
        • Lecture13.7
          Chapter Notes – Surface Area and Volume of a Cuboid and Cube
        • Lecture13.8
          Chapter Notes – Surface Area and Volume of A Right Circular Cylinder
        • Lecture13.9
          Chapter Notes – Surface Area ad Volume of A Right Circular Cone
        • Lecture13.10
          Chapter Notes – Surface Area ad Volume of A Sphere
        • Lecture13.11
          NCERT Solutions – Surface Area and Volume Exercise 13.1 – 13.9
        • Lecture13.12
          R D Sharma Solutions Surface Areas And Volumes of A cuboid and A cube
        • Lecture13.13
          R D Sharma Solutions Surface Areas And Volumes of A Right Circular Cylinder
        • Lecture13.14
          R D Sharma Solutions Surface Areas And Volumes of A Right Circular Cone
        • Lecture13.15
          R D Sharma Solutions Surface Areas And Volumes of A Sphere
        • Lecture13.16
          Revision Notes Surface Areas And Volumes
      • 14.Statistics
        15
        • Lecture14.1
          Data; Presentation of Data; Understanding Basic terms; 01 hour
        • Lecture14.2
          Questions; 52 min
        • Lecture14.3
          Bar Graph, Histogram, Frequency Polygon; 01 hour
        • Lecture14.4
          Histogram for Grouped Frequency Distribution (Class interval in Inclusive form), Frequency Polygon, Measures of Central Tendency, 01 hour
        • Lecture14.5
          Examples Based on Mean of Ungrouped Data 56 min
        • Lecture14.6
          Direct Method of Finding Mean of Ungrouped Data, Median of Cont. Freq. Distribution (Grouped Data) 01 hour
        • Lecture14.7
          Mean; Mean for an ungrouped freq. Dist. Table 25 min
        • Lecture14.8
          Chapter Notes – Statistics – Tabular Representation of Statistical Data
        • Lecture14.9
          Chapter Notes – Statistics – Graphical Representation of Statistical Data
        • Lecture14.10
          Chapter Notes – Statistics – Measures of Central Tendency
        • Lecture14.11
          NCERT Solutions – Statistics Exercise 14.1 – 14.4
        • Lecture14.12
          R D Sharma Solutions Tabular Representation of Statistical Data
        • Lecture14.13
          R D Sharma Solutions Graphical Representation of Statistical Data
        • Lecture14.14
          R S Aggarwal Solutions Statistics
        • Lecture14.15
          Revision Notes Statistics
      • 15.Probability
        8
        • Lecture15.1
          Activities; Understanding term Probability; Experiments; 44 min
        • Lecture15.2
          Event; Probability; Empirical Probability- Tossing a coin; 31 min
        • Lecture15.3
          Rolling a dice; Miscellaneous Example; 27 min
        • Lecture15.4
          Chapter Notes – Probability
        • Lecture15.5
          NCERT Solutions – Probability Exercise 15.1
        • Lecture15.6
          R D Sharma Solutions Probability
        • Lecture15.7
          R S Aggarwal Solutions Probability
        • Lecture15.8
          Revision Notes Probability

        NCERT Solutions – Lines and Angles Exercise 6.1 – 6.3

        Exercise 6.1

        Q.1    In figure , lines AB and CD intersect at O. If ∠AOC+∠BOE=70o and ∠BOD=40o, find ∠BOE and reflex ∠COE.

        1Sol.

        Since OA and OB are opposite rays. Therefore AB is a line.
        Since ray OC stands on AB. Therefore,
        ∠AOC+∠COB=180o [Linear Pairs]
        ⇒ ∠AOC+∠COE+∠BOE=180o [Since ∠COB=∠COE+∠BOE]
        ⇒ (∠AOC+∠BOE)+∠COE=180o
        ⇒ 70o+∠COE=180o [Since ∠AOC+∠BOE=70o (Given)]
        ⇒ ∠COE=180o−70o=110o
        Therefore Reflex ∠COE=360o−110o=250o
        Since OC and OD are opposite rays. Therefore CD is a line.
        Since ray OE stands on CD. Therefore –
        ∠COE+∠EOD=180o [Linear Pairs]
        ⇒ ∠COE+∠BOE+∠BOD=180o[Since ∠EOD=∠BOE+∠BOD]
        ⇒ 110o+∠BOE+40o=180o
        [Since ∠COE=110o(provedabove),∠BOD=40o (Given)]
        ⇒ ∠BOE=180o−110o−40o=30o
        Hence, ∠BOE=30o
        and reflex∠COE=250o


        Q.2       In figure , lines XY and MN intersect at O. If ∠POY=90o and a : b = 2 : 3, find c.

        2Sol.

        Since a : b = 2 : 3 and a + b = ∠POX=∠POY = 90º and sum of ratios = 2 + 3 = 5
        Therefore a=25×90o=2×18o=36o
        and b=35×90o=3×18o=54o
        Since OM and ON are opposite rays. Therefore MN is a line.
        Since ray OX stands on MN. Therefore,
        ∠MOX+∠XON=180o [Linear Pairs]
        ⇒b+c=180o
        ⇒54∘+c=180o
        ⇒c=180o−54o=126o
        Hence , c=126o


        Q.3       In figure ∠PQR=∠PRQ, then prove that ∠PQS=∠PRT.

        4Sol.

        Since QS and QR are opposite rays. Therefore, SR is a line.
        Since QP stands on the line SR.
        Therefore ∠PQS+∠PQR=180o [Linear Pair] …(1)
        Again RQ and RT are opposite rays. Therefore, QT is a line.
        Since PR stands on the line QT.
        Therefore ∠PRQ+∠PRT=180o [Linear Pair] … (2)
        From (1) and (2), we have
        ∠PQS+∠PQR=∠PRQ+∠PRT [Since Each side = 180º] … (3)
        Also ∠PQR=∠PRQ       (given)      …………….(4)
        Subtracting (4) from (3), we have
        ∠PQS=∠PRT


        Q.4       In figure, if x + y = w + z, then prove that AOB is a line.

        5Sol.

        We know that the sum of all angles around a point is equal to  360º
        Therefore (∠BOC+∠COA)+(∠BOD+∠AOD)=360o
        ⇒ (x+y)+(w+z)=360o
        But x+y=w+z [Given]
        Therefore x+y=w+z=360o2=180o
        Thus , ∠BOCand∠COA,∠BODand∠AOD form linear pairs. Consequently OA and OB are two opposite rays.
        Therefore AOB is a straight line.


        Q.5       In figure POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that ∠ROS=12(∠QOS−∠POS)

        6
        Sol.

        Since OR is perpendicular to the line PQ.
        Therefore ∠POR=∠ROQ [Since Each = 90º]
        ⇒ ∠POS+∠ROS=∠QOS−∠ROS
        ⇒ 2∠ROS=∠QOS−∠POS
        ⇒ ∠ROS=12(∠QOS−∠POS)


        Q.6      It is given that ∠XYZ=64o and XY is produced to point P. Draw a figure from the given information. If ray YQ bisects ∠ZYP,find∠XYQ and reflex ∠QYP.
        Sol.

        Since XY is produced to point P. Therefore XP is a straight line.
        Since YZ stands on XP.
        Therefore ∠XYZ+∠ZYP=180o [Linear Pair]
        ⇒ 64o+∠ZYP=180o [Since ∠XYZ=64o]
        ⇒ ∠ZYP=180o−64o=116o
        Since ray YQ bisects ∠ZYP

        8
        Therefore , ∠QYP=∠ZYQ=116o2=58∘
        Now , ∠XYQ=∠XYZ+∠ZYQ
        ⇒ ∠XYQ=64o+58o=122o
        and reflex ∠QYP=360o−∠QYP=360o−58o=302o

        Exercise 6.2

        Q.1     In figure, find the values of x and y and then show that AB || CD.

        25
        Sol.

        Since AB || CD and transversal PQ intersects them at R and S respectively.
        Since ∠ARS=∠RSD [Alternate angles]

        9⇒ x=y
        But ∠RSD=∠CSQ [Vertically opp. angles]
        ⇒ y=130o [Since ∠CSQ=130o]
        Hence , x = y = 130º


        Q.2      In figure , if AB || CD, CD|| EF and y : z = 3 : 7 , find x.

        10
        Sol.

        Since CD|| EF and transversal PQ intersects them at S and T respectively.
        Since ∠CST=∠STF [Alternate Angles ]
        ⇒ 180o−y=z [Since ∠y+∠CST=180o being linear pair]
        ⇒ y+z=180o
        Given y : z = 3 : 7
        So, the sum of ratios = 3 + 7 = 10

        11Therefore y=310×180o
        =3×18o=54o
        and z=710×180o=7×18o=126o
        Since AB || CD and transversal PQ intersects them at R and S respectively.
        Since ∠ARS+∠RSC=180o [Consecutive interior angles are supplementary]
        ⇒ x+y=180o
        ⇒ x=180o−y
        =180o−54o=126o [Since y = 54º]
        Hence, x = 126º


        Q.3     In figure , if AB || CD, EF ⊥ CD and ∠GED = 126º, find ∠AGE,∠GEFand∠FGE.

        12
        Sol.

        Since AB || CD and transversal GE cuts them at G and E respectively.
        Since ∠AGE=∠GED [Alternate angles]
        ⇒ ∠AGE=126o [Since ∠GED=126o (given)]
        ∠GEF=∠GED−∠FED=126o−90o=36o
        and , ∠FGE=∠GEC [Alternate angles]
        ⇒ ∠FGE=90o−∠GEF
        =90o−36o=54o
        Hence, ∠AGE=126o,∠GEF=36oand∠FGE=54o


        Q.4     In figure , if PQ || ST, ∠PQR=110o and ∠RST=130o , find ∠QRS.

        13
        Sol.         Produce PQ to intersect SR at point M.

        14
        Now, PM || ST and transversal SM intersects them at M and R respectively.
        Since ∠SMQ=∠TSM  [Alternate angles]
        ⇒ ∠SMQ= 130º  [Since ∠TSM= 130º(given)]
        ⇒ ∠QMR= 180º – 130º = 50º [Since ∠SMQ+∠QMR= 180º( linear pairs)]
        Since ray RQ stands at Q on PM.
        Since ∠PQR+∠RQM= 180º  (Linear pair)
        ⇒ 110º + ∠RQM = 180º
        ⇒ ∠RQM= 70º
        Since ∠QRS = 180º – (70º + 50º) = 60º  [Since sum of the angles of a triangle is 180º]


        Q.5      In figure , if AB || CD, ∠APQ= 50º and ∠PRD= 127º , find x and y.

        15
        Sol.

        Therefore AB || CD and transversal PQ intersects them at P and Q respectively.
        Therefore ∠PQR=∠APQ [Alternate angles]
        ⇒ x = 50º [Since ∠APQ= 50º (given)]
        Since AB || CD and transversal PR intersects them at P and R respectively.
        Therefore ∠APR=∠PRD [Alternate angles]
        ⇒ ∠APQ+∠QPR = 127º [Since ∠PRD= 127º]
        ⇒ 50º + y = 127º [Since ∠APQ= 50º]
        ⇒ y = 127º – 50º = 77º
        Hence , x = 50º and y = 77º


        Q.6      In figure , PQ and RS are two mirrors placed parallel to each other. An incident ray AB strikes the mirror PQ at B, the reflected ray moves along the path BC and strikes the mirror RS at C and again reflects back along CD. Prove that AB|| CD.

        16Sol.

        Two plane mirrors PQ and RS are placed parallel to each other i.e., PQ || RS. An incident ray AB after reflections takes the path BC and CD.

        17BN and CM are the normals to the plane mirrors PQ and RS respectively.
        Since BN ⊥ PQ, CM ⊥ RS and PQ || RS
        Therefore BN ⊥ RS
        ⇒ BN || CM
        Thus BN and CM are two parallel lines and a transversal BC cuts them at B and C respectively.
        Therefore ∠2=∠3 [Alternative interior angles]
        But , ∠1=∠2and∠3=∠4 [By laws of reflection]
        Therefore, ∠1+∠2=∠2+∠2and∠3+∠4=∠3+∠3
        ⇒ ∠1+∠2=2(∠2)and∠3+∠4=2(∠3)
        ⇒ ∠1+∠2=∠3+∠4 [Since ∠2=∠3⇒2(∠2)=2(∠3)]
        ⇒ ∠ABC=∠BCD
        Thus, lines AB and CD are intersected by transversal BC such that –
        ∠ABC=∠BCD
        i.e., alternate interior angles are equal.
        Therefore, AB || CD.

        Exercise 6.3

        Q.1     In figure sides QP and RQ of Δ PQR are produced to points S and T respectively. If ∠SPR= 135º and ∠PQT= 110º, find ∠PRQ.

        18Sol.

        We have ,
        ∠QPR+∠SPR= 180º [Linear pair]
        ⇒ ∠QPR + 135º = 180º
        ⇒ ∠QPR= 180º – 135º = 45º
        Now , ∠TQP=∠QPR+∠PRQ [By exterior angle theorem]
        ⇒ 110º = 45º + ∠PRQ
        ⇒ ∠PRQ = 110º – 45º = 65º
        Hence ∠PRQ = 65º


        Q.2      In figure, ∠X= 62º, ∠XYZ= 54º. If YO and ZO are the bisectors of ∠XYZand∠XZY respectively of Δ XYZ, find ∠OZYand∠YOZ

        19Sol.

        Consider Δ XYZ,
        ∠YXZ+∠XYZ+∠XZY = 180º [Angle – sum property]
        ⇒ 62º + 54º + ∠XZY = 180º [Since ∠YXZ= 62º , ∠XYZ= 54º]
        ⇒∠XZY=180∘−62∘−54∘=64∘
        Since YO and ZO are bisectors of ∠XYZand∠XZY
        Therefore
        ∠OYZ=12×∠XYZ=12×54=27∘
        and , ∠OZY=12×∠XZY=12×64∘=32∘
        In Δ OYZ , we have
        ∠YOZ+∠OYZ+∠OZY= 180º [Angle sum property]
        ⇒ ∠YOZ+ 27º + 32º = 180º
        ⇒ ∠YOZ = 180º – 27º – 32º
        = 180º – 59º = 121º
        Hence, ∠OZY= 32º
        and ∠YOZ= = 121º


        Q.3      In figure if AB || DE, ∠BAC = 35º and ∠CDE= 53º, find ∠DCE.

        21Sol.

        Since AB || DE and transversal AE intersects them at A and E respectively.
        Therefore ∠DEA=∠BAE [Alternate angles]
        ⇒ ∠DEC= 35º [Since ∠DEA=∠DECand∠BAE= 35º]
        In Δ DEC, we have
        ∠DCE+∠DEC+∠CDE= 180º [Angle sum property]
        ⇒ ∠DCE+ 35º + 53º = 180º
        ⇒ ∠DCE= 180º – 35º – 53º
        = 180º – 88º = 92º
        Hence , ∠DCE= 92º


        Q.4      In figure, if lines PQ and RS intersect at point T, such that ∠PRT= 40º, ∠RPT= 95º and ∠TSQ= 75º, find ∠SQT.

        20Sol.

        In Δ PRT, we have
        ∠PRT+∠RTP+∠TPR= 180º [Angle – sum property]
        ⇒ 40º + ∠RTP+ 95º = 180º
        ⇒ ∠RTP= 180º – 40º – 95º
        = 180º – 135º = 45º
        ∠STQ=∠RTP [Vertically opp. angles]
        ⇒ ∠STQ= 45º [Since RTP = 45º (proved)]
        In Δ TQS we have
        ∠SQT+∠STQ+∠TSQ= 180º [Angle – sum property]
        ⇒ ∠SQT+ 45º + 75º = 180º [Since ∠STQ=45∘(proved) and ∠TSQ=75∘]
        ⇒ ∠SQT= 180º – 45º – 75º
        = 180º – 120º = 60º
        Hence , ∠SQT= 60º


        Q.5      In figure if PQ ⊥ PS, PQ|| SR, ∠SQR = 28º and ∠QRT = 65º, then find the values of x and y.

        22Sol.

        Using exterior angle property in Δ SRQ, we have
        ∠QRT=∠RQS+∠QSR
        ⇒ 65º = 28º + ∠QSR [Since ∠QRT= 65º , ∠RQS= 28º]
        ⇒ QSR = 65º – 28º = 37º
        Since PQ|| SR and the transversal PS intersects them at P and S respectively.
        Therefore ∠PSR+∠SPQ= 180º [Sum of consecutive interior angles is 180º]
        ⇒ (∠PSQ+∠QSR)+ 90º = 180º
        ⇒ y + 37º + 90º = 180º
        ⇒ y = 180º – 90º – 37º
        = 180º – 127º = 53º
        In the right ΔSPQ, we have
        ∠PQS+∠PSQ= 90º
        ⇒ x + 53º = 90º
        ⇒ x = 90º – 53º = 37º
        Hence, x = 37º
        and y = 53º


        Q.6    In figure , the side QR of Δ PQR is produced to a point S. If the bisectors of ∠PQRand∠PRS meet at point T, then prove that ∠QTR=12∠QPR.

        23Sol.

        In ΔPQR we have ext. ∠PRS=∠P+∠Q
        ⇒ 12ext.∠PRS=12∠P+12∠Q   ( By exterior angle theorem )
        ⇒ ∠TRS=12∠P+∠TQR … (1)
        [Since QT and RT are bisectors of ∠Qand∠PRS respectively therefore ∠Q=2∠TQRandext.∠PRS=2∠TRS]
        In Δ QRT. we have ext. ∠TRS=∠TQR+∠T … (2)
        From (1) and (2) , we get
        12∠P+∠TQR=∠TQR+∠T
        ⇒ 12∠P=∠T
        ⇒ ∠QTR=12∠QPR [ Since ∠P=∠QPRand∠T=∠QTR]
        Hence , ∠QTR=12∠QPR

        Prev Chapter Notes – Lines and Angles
        Next R D Sharma Solutions Lines and Angles

        Leave A Reply Cancel reply

        Your email address will not be published. Required fields are marked *

        All Courses

        • Backend
        • Chemistry
        • Chemistry
        • Chemistry
        • Class 08
          • Maths
          • Science
        • Class 09
          • Maths
          • Science
          • Social Studies
        • Class 10
          • Maths
          • Science
          • Social Studies
        • Class 11
          • Chemistry
          • English
          • Maths
          • Physics
        • Class 12
          • Chemistry
          • English
          • Maths
          • Physics
        • CSS
        • English
        • English
        • Frontend
        • General
        • IT & Software
        • JEE Foundation (Class 9 & 10)
          • Chemistry
          • Physics
        • Maths
        • Maths
        • Maths
        • Maths
        • Maths
        • Photography
        • Physics
        • Physics
        • Physics
        • Programming Language
        • Science
        • Science
        • Science
        • Social Studies
        • Social Studies
        • Technology

        Latest Courses

        Class 8 Science

        Class 8 Science

        ₹8,000.00
        Class 8 Maths

        Class 8 Maths

        ₹8,000.00
        Class 9 Science

        Class 9 Science

        ₹10,000.00

        Contact Us

        +91-8287971571

        contact@dronstudy.com

        Company

        • About Us
        • Contact
        • Privacy Policy

        Links

        • Courses
        • Test Series

        Copyright © 2021 DronStudy Pvt. Ltd.

        Login with your site account

        Lost your password?

        Modal title

        Message modal