-
01. Real Numbers
9-
Lecture1.1
-
Lecture1.2
-
Lecture1.3
-
Lecture1.4
-
Lecture1.5
-
Lecture1.6
-
Lecture1.7
-
Lecture1.8
-
Lecture1.9
-
-
02. Polynomials
11-
Lecture2.1
-
Lecture2.2
-
Lecture2.3
-
Lecture2.4
-
Lecture2.5
-
Lecture2.6
-
Lecture2.7
-
Lecture2.8
-
Lecture2.9
-
Lecture2.10
-
Lecture2.11
-
-
03. Linear Equation
9-
Lecture3.1
-
Lecture3.2
-
Lecture3.3
-
Lecture3.4
-
Lecture3.5
-
Lecture3.6
-
Lecture3.7
-
Lecture3.8
-
Lecture3.9
-
-
04. Quadratic Equation
8-
Lecture4.1
-
Lecture4.2
-
Lecture4.3
-
Lecture4.4
-
Lecture4.5
-
Lecture4.6
-
Lecture4.7
-
Lecture4.8
-
-
05. Arithmetic Progressions
11-
Lecture5.1
-
Lecture5.2
-
Lecture5.3
-
Lecture5.4
-
Lecture5.5
-
Lecture5.6
-
Lecture5.7
-
Lecture5.8
-
Lecture5.9
-
Lecture5.10
-
Lecture5.11
-
-
06. Some Applications of Trigonometry
7-
Lecture6.1
-
Lecture6.2
-
Lecture6.3
-
Lecture6.4
-
Lecture6.5
-
Lecture6.6
-
Lecture6.7
-
-
07. Coordinate Geometry
17-
Lecture7.1
-
Lecture7.2
-
Lecture7.3
-
Lecture7.4
-
Lecture7.5
-
Lecture7.6
-
Lecture7.7
-
Lecture7.8
-
Lecture7.9
-
Lecture7.10
-
Lecture7.11
-
Lecture7.12
-
Lecture7.13
-
Lecture7.14
-
Lecture7.15
-
Lecture7.16
-
Lecture7.17
-
-
08. Triangles
15-
Lecture8.1
-
Lecture8.2
-
Lecture8.3
-
Lecture8.4
-
Lecture8.5
-
Lecture8.6
-
Lecture8.7
-
Lecture8.8
-
Lecture8.9
-
Lecture8.10
-
Lecture8.11
-
Lecture8.12
-
Lecture8.13
-
Lecture8.14
-
Lecture8.15
-
-
09. Circles
8-
Lecture9.1
-
Lecture9.2
-
Lecture9.3
-
Lecture9.4
-
Lecture9.5
-
Lecture9.6
-
Lecture9.7
-
Lecture9.8
-
-
10. Areas Related to Circles
10-
Lecture10.1
-
Lecture10.2
-
Lecture10.3
-
Lecture10.4
-
Lecture10.5
-
Lecture10.6
-
Lecture10.7
-
Lecture10.8
-
Lecture10.9
-
Lecture10.10
-
-
11. Introduction to Trigonometry
7-
Lecture11.1
-
Lecture11.2
-
Lecture11.3
-
Lecture11.4
-
Lecture11.5
-
Lecture11.6
-
Lecture11.7
-
-
12. Surface Areas and Volumes
9-
Lecture12.1
-
Lecture12.2
-
Lecture12.3
-
Lecture12.4
-
Lecture12.5
-
Lecture12.6
-
Lecture12.7
-
Lecture12.8
-
Lecture12.9
-
-
13. Statistics
12-
Lecture13.1
-
Lecture13.2
-
Lecture13.3
-
Lecture13.4
-
Lecture13.5
-
Lecture13.6
-
Lecture13.7
-
Lecture13.8
-
Lecture13.9
-
Lecture13.10
-
Lecture13.11
-
Lecture13.12
-
-
14. Probability
9-
Lecture14.1
-
Lecture14.2
-
Lecture14.3
-
Lecture14.4
-
Lecture14.5
-
Lecture14.6
-
Lecture14.7
-
Lecture14.8
-
Lecture14.9
-
-
15. Construction
7-
Lecture15.1
-
Lecture15.2
-
Lecture15.3
-
Lecture15.4
-
Lecture15.5
-
Lecture15.6
-
Lecture15.7
-
NCERT Solutions – Introduction to Trigonometry
Q.1 In ΔABC, right angled at B, AB = 24 cm, BC = 7 cm. Determine :
(i) sin A, cos A (ii) sin C, cos C
Sol. Let us draw a right ΔABC.
By using the Pythagoras theorem, we have
AC2=AB2+BC2=(24)2+(7)2
= 576 + 49 = 625
⇒AC=625−−−√=25cm
(i) sinA=BCAC=725, [Since, sinθ=PH]
cosA=ABAC=2425 [Since,cosθ=BH]
(ii) sinC=ABAC=2425,
cosC=BCAC=725.
Q.2 In adjoining figure, find tan P – cot R.
Sol. By using the Pythagoras theorem, we have
PR2=PQ2+QR2
⇒132=122+QR2
⇒ QR2=132−122=169−144=25
⇒ QR=25−−√=5
Therefore, tanP=PB=QRPQ=512 and cotR=BP=QRPQ=512
Hence, tan P – cot R = 512−512=0
Q.3 If sinA=34, calculate cos A and tan A.
Sol. Consider a ΔABC in which ∠B=90∘.
For ∠A, we have
Base = AB, Perp = BC and Hyp = AC
Therefore, sinA=PH,=BCAC=34
Let BC = 3k and AC = 4k.
Then, AB=AC2−BC2−−−−−−−−−−√=(4k)2−(3k)2−−−−−−−−−−−√
=16k2−9k2−−−−−−−−−√=7k2−−−√=7k−−√
Therefore, cosA=BH=ABAC=7k√4k=7√4
tanA=PB=BCAB=3k7k√=37√
Q.4 Given 15 cot A = 8, find sin A and sec A.
Sol. Consider a ΔABC in which ∠B=90∘.
For ∠A, we have
Base = AB, Perp = BC
and Hyp = AC
[Since, 15 cot A = 8 ⇒cotA=815 ]
Let AB = 8k and BC = 15k.
Then, AC=AB2+BC2−−−−−−−−−−√=(8k)2+(15k)2−−−−−−−−−−−−√
=64k2+225k2−−−−−−−−−−−√=289k2−−−−−√=17k
Therefore, sinA=PH=BCAC=15k17k=1517
and, secA=HB=ACAB=17k8k=178
Q.5 Given secθ=1312, calculate all other trigonometric ratios.
Sol. Consider a ΔABC in which ∠A=θ∘ and ∠B=90∘
Then, Base = AB, Perp = BC and Hyp = AC
Therefore, secθ=HB=ACAB=1312
Let AC = 13k and AB = 12k. Then,
BC=AC2−AB2−−−−−−−−−−√=(13k)2−(12k)2−−−−−−−−−−−−√
=169k2−144k2−−−−−−−−−−−√=25k2−−−−√=5k
Therefore, sinθ=PH=BCAC
=5k13k=513
cosθ=BH=ABAC=12k13k=1213
tanθ=PB=BCAB=512
cotθ=1tanθ=125
cosecθ=1sinθ=135
Q.6 If ∠A and ∠B are acute angles such that cos A = cos B, then show that ∠A=∠B.
Sol. In rt ΔABC, cosA=ACAB=[BH]
and, cosB=BCAB
But, cos A = cos B [Given]
⇒ACAB=BCAB
⇒AC=BC
Since, in ΔABC, AC = BC
⇒∠A=∠B [Angles opposite to equal sides are equal]
Q.7 If cotθ=78, evaluate :
(i) (1+sinθ)(1−sinθ)(1+cosθ)(1−cosθ)
(ii) cot2θ
Sol. Consider a ΔABC in which ∠A=θ∘ and ∠B=90∘. Then, Base = AB, Perp = BC and Hyp = AC
Therefore, cotθ=BP=ABBC=78
Let AB = 7k and BC = 8k.
Then, AC=BC2+AB2−−−−−−−−−−√=(8k)2+(7k)2−−−−−−−−−−−√
=64k2+49k2−−−−−−−−−−√=113k2−−−−−√=113k−−−−√
Therefore, sinθ=PH=BCAC=8k113k√=8113√
and cosθ=BH=ABAC=7k113k√=7113√
(i) Therefore, (1+sinθ)(1−sinθ)(1+cosθ)(1−cosθ)=1−sin2θ1−cos2θ=1−641131−49113
=113−64113−49=4964
(ii) cot2θ=(78)2=4964
Q.8 If 3 cot A = 4, check whether 1−tan2A1+tan2A=cos2 A−sin2A or not.
Sol. Consider a ΔABC in which ∠B=90∘.
For ∠A, we have
Base = AB, Perp = BC and Hyp = AC
Therefore, cotA=BP=ABBC=43
Let AB = 4k and BC = 3k [3cot A = 4 ⇒cotA=43]
Then, AC=AB2+BC2−−−−−−−−−−√=(4k)2+(3k)2−−−−−−−−−−−√
=16k2+9k2−−−−−−−−−√=25k2−−−−√=5k
Therefore, sinA=PH=BCAC=3k5k=35
cosA=BH=ABAC=4k5k=45
and, tanA=1cotA=34
L.H.S. =1−tan2A1+tan2A=1−9161+916=16−916+9=725
R.H.S. = cos2A−sin2A
=(45)2−(35)2=1625−925=725
⇒ L.H.S = R.H.S.
Therefore, 1−tan2A1+tan2A=cos2A−sin2A
Q.9 In ΔABC right angled at B, if tan A = 13√, find the value of
(i) sin A cos C + cos A sin C
(ii) cos A cos C – sin A sin C
Sol. Consider a ΔABC , in which ∠B=90∘.
For ∠A, we have
Base = AB, Perp = BC
and Hyp = AC
tanA=PerpHyp
= BCAB=13√
Let BC = k and AB = 3–√ k .
Then, AC=AB2+BC2−−−−−−−−−−√=3k2+k2−−−−−−−√
= 4k2−−−√=2k
Therefore, sinA=PerpHyp=BCAC=k2k=12
cosA=BaseHyp=ABAC=3k√2k=3√2
For ∠C, we have
Base = BC, Perp = AB and Hyp = AC
Therefore, sinC=PerpHyp=ABAC=3k√2k=3√2
and, cosC=BaseHyp=BCAC=k2k=12
(i) sinA cosC + cosA sinC = 12×12+3√2×3√2
=14+34=44=1
(ii) cos A cosC – sin A sin C = 3√2×12−12×3√2=0
Q.10 In ΔPQR, right angled at Q, PR + QR 25 cm and PQ = 5 cm. Determine the values of sin P cos P and tan P.
Sol. In ΔPQR, right ∠d at Q,
PR + QR = 25 cm and PQ = 5cm
Let QR = x cm
Therefore, PR = (25 – x) cm
By Pythagoras theorem, we have
RP2=RQ2+QP2
⇒ (25−x)2=x2+52
⇒625−50x+x2=x2+25
⇒−50x=−600
⇒x=−600−50=12
Therefore, RQ = 12cm
⇒ RP = (25 – 12)cm = 13cm
Now, sinP=RQRP=1213
cosP=PQRP=513
and tanP=RQPQ=125
Q.11 State whether the following are true or false. Justify your answer.
(i) The value of tan A is always less than 1.
(ii) secA=125 for some value of angle A .
(iii) cos A is the abbreviation used for the cosecant of angle A.
(iv) cot A is the product of cot and A.
(v) sinθ=43 for some angle θ.
Sol. (i) False because sides of a right triangle may have any length, so tan A may have any value.
(ii) True as sec A is always greater than 1.
(iii) False as cos A is the abbreviation used for cosine A.
(iv) False as cot A is not the product of ‘cot’ and A. ‘cot’ separated from A has no meaning.
(v) False as sinθ cannot be > 1.
Q.1 Evaluate :
(i) sin 60 ° cos 30° + sin 30° cos 60°
(ii) 2tan245∘+cos230∘−sin260∘
(iii) cos45∘sec30∘+cosec30∘
(iv) sin30∘+tan45∘−cosec60∘sec30∘+cos60∘+cot45∘
(v) 5cos260∘+4sec230∘−tan245∘sin230∘+cos230∘
Sol. (i) sin 60° cos 30° + sin 30° cos 60°
=3√2×3√2+12×12
=34+14=3+14=44=1
(ii) 2tan245∘+cos230∘−sin260∘
=2(1)2+(3√2)2−(3√2)2
=2+34−34=2
(iii) cos45∘sin30∘+cosec30∘
=12√23√+2=12√2+23√3√=12√×3√2+23√
= 3√2√×2(3√+1)×3√−13√−1
= 3√(3√−1)2√×2(3−1)=2√×3√(3√−1)2√×2√×2×2
= 32√−6√8
(iv) sin30∘+tan45∘−cosec60∘sin30∘+cos45∘+cot45∘
12+1−23√23√+12=1+22−23√23√+1+22
=32−23√23√+32=33√−423√4+33√23√
=33√−44+33√=(33√−4)(33√−4)(4+33√)(33√−4)
27+16−123√−123√27−16
43−243√11
(v) 5cos260∘+4sec230∘−tan245∘sin230∘+cos230∘
Sol. 5(12)2+4(23√)2−(1)2(12)2+(3√2)2
5×14+4×43−114+34=54+163−1=112(15+64−12)1+34
112×6744=6712
Q.2 Choose the correct option and justify :
(i) 2tan30∘1+tan230∘=
(A) sin 60° (B) cos 60°
(C) tan 60° (D) sin 30°
(ii) 1−tan245∘1+tan245∘=
(A) tan 90° (B) 1
(C) sin 45 ° (D) 0
(iii) sin 2A = 2 sinA is true when A =
(A) 0° (B) 30°
(C) 45° (D) 60°
(iv) 2tan230∘1−tan230∘=
(A) cos 60° (B) sin 60°
(C) tan 60 ° (D) none of these
Sol. (i) (A)
Because 2tan30∘1+tan230∘=2×13√1+(13√)2=23√1+13
=23√×33+1=23√×34
=3√2=sin60∘
(ii) (D)
Because 1−tan245∘1+tan245∘=1−11+1=02=0
(iii) (A)
Because when A = 0, sin 2 A = sin 0 = 0
and, 2 sinA = 2 sin 0 = 2 × 0 = 0
⇒ sin 2A = 2sinA, when A = 0
(iv) (C)
Because 2tan30∘1−tan230∘=2×13√1−(13√)2=23√1−13
=23√×33−1=23√×32
=3–√=tan60∘
Q.3 If tan (A + B) = 3–√ and tan (A – B) = 13√;0∘<A+B≤90∘;A>B, find A and B.
Sol. tan (A + B) = 3–√
⇒tan(A+B)=tan60∘
⇒A+B=60∘ …(1)
tan(A−B)=13√
⇒tan(A−B)=tan30∘
⇒ A – B = 30 °…(2)
Solving (1) and (2), we get
A = 45° and B = 15°
Hence, A = 45° and B = 15°
Q.4 State whether the following are true of false. Justify your answer.
(i) sin (A + B) = sin A + sin B.
(ii) The value of sin θ increases as θ increases.
(iii) The value of casθ increases as θ increases.
(iv) sinθ = cosθ for all values of θ.
(v) cot A is not defined for A = 0°.
Sol. (i) False Because
When A = 60° and B = 30°. Then,
sin (A + B) = sin (60° + 30°) = sin 90° = 1
and, sin A + sin B = sin 60° + sin 30°
=3√2+12=3√+12
⇒ sin (A + B) ≠ sin A + sin B
(ii) True Because
Clearly from the table below :
We find that the value of sinθ increases as θ increases.
(iii) False Because
Clearly from the table below :
We find that the value of cosθ decreases as θ increases.
(iv) False as it is only true for θ = 45°.
(sin45∘=12√=cos45∘)
(v) True Because tan 0° = 0 and cot0∘=1tan0∘=10,i.e., undefined.
Q.1 Evaluate :
(i) sin18∘cos72∘
(ii) tan26∘cot64∘
(iii) cos 48° – sin 42°
(iv) cosec 31° – sec 59°
Sol. (i) sin18∘cos72∘=sin(90∘−72)cos72∘=cos72∘cos72∘=1[Since,sin90−θ=cosθ]
(ii) tan26∘cot64∘=tan(90∘−64∘)cot64∘=cot64∘cot64∘=1 [Since,tan(90−θ)=cotθ]
(iii) cos48° – sin42° = cos (90° – 42°) – sin 42°
= sin 42° – sin 42° = 0 [Since,cos(90−θ)=sinθ]
(iv) cosec 31° – sec 59° = cosec (90° – 59°) – sec 59° = 0
=sec59∘−sec59∘=0 [Since,cosec(60−θ)=secθ]
Q.2 Show that
(i) tan 48° tan 23° tan 42° tan 67° = 1
(ii) cos 38° cos 52° – sin 38° sin 52 ° = 0
Sol. (i) tan 48° tan 23° tan 42 ° tan 67°
= tan (90° – 42°) tan(90° – 67°) tan 42° tan 67°
= cot 42° cot 67° tan 42° tan 67° [Since,tan(90−θ)=cotθ]
=1tan42∘.1tan67∘.tan42∘tan67∘=1
(ii) cos 38°cos 52°– sin 38°sin 52°
= cos(90° – 52°)cos(90°– 38°) – sin 38°sin 52°
= sin 52° sin 38° – sin 38°sin 52° = 0 [Since,cos(90∘−θ)=sinθ]
Q.3 If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A.
Sol. We are given that
tan 2A = cot (A – 18°)…(1)
Since tan 2A = cot (90° – 2A), so we can write (1) as
cot(90°–2A) = cot (90° – 2A), so we can write (1) as
cot (90° – 2A) = cot (A – 18°) [Since,cot(90∘−θ)=tanθ]
Since (90° – 2A) and (A – 18°) are both acute angle therefore,
90° – 2A = A – 18°
⇒ – 2A – A = – 18° – 90°
⇒ – 3A = – 108°
⇒ A = 36°
Q.4 If tan A = cot B, prove that A + B = 90°.
Sol. We are given that
tan A = cot B…(1)
Since tan A = cot(90° – A), so we can write (1) as
cot (90° – A ) = cot B [Since,cot(90∘−θ)=tanθ]
Since (90° – A) and B are both acute angles, therefore,
(90° – A) = B
⇒ A + B = 90°
Q.5 If sec 4 A = cosec (A – 20°), where 4 A is an acute angle, find the value of A.
Sol. We are given that sec 4A = cosec (A – 20°). ….(1)
Since sec 4A = cosec (90°– 4A), so we can write (1) as
cosec (90° – 4A) = cosec (A – 20°) [Since,cosec(90∘−θ)=secθ]
Since (90° – 4A) and (A – 20°) are both acute angles, therefore,
90° – 4A = A – 20°
⇒ – 4A – A = – 20° – 90°
⇒ – 5A = 110°
⇒ A = 22°
Q.1 Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.
Sol. Consider a ΔABC, in which ∠B=90∘.
For ∠A, we have
Base = AB, Perp = BC
and Hyp = AC
Therefore, cotA=BasePerp=ABBC
⇒ABBC=cotA=cotA1
Let AB = k cotA and BC = k.
By Pythagoras Theorem,
AC=AB2+BC2−−−−−−−−−−√=k2cot2A+k2−−−−−−−−−−−√
=k1+cot2A−−−−−−−−√
Therefore, sinA=PerpBase=BCAC=kk1+cot2A√
=11+cot2A√
secA=HypBase=ACAB=k1+cot2A√kcotA
=1+cot2AcotA−−−−−−√
and, tanA=PerpBase=BCAB=kkcotA=1cotA
Q.2 Write the other trigonometric ratios of A in terms of secA.
Sol. Consider a ΔABC, in which ∠B=90∘.
For ∠A, we have
Base = AB, Perp = BC
and Hyp = AC
Therefore, secA=HypBase=ACAB
⇒ACAB=secA=secA1
⇒ABAC=1secA=1secA1 (Note this step)
Let AB=k(1secA),AC=k(1)
By phythagoras Theorem
BC=AC2+AB2−−−−−−−−−−√=k2−k2(1sec2A)−−−−−−−−−−−−√
=ksec2A−1sec2A−−−−−−√=ksec2A−1√sec2A
Therefore, sinA=BCAC=ksec2A−1√secAk=sec2A−1√secA
cosA=ABACk(1secA)k=1secA
tanA=BCAB=ksec2A−1√secAk(1secA)=sec2A−1−−−−−−−−√
cotA=1tanA=1sec2A−1√
cosecA=1sinA=secAsec2A−1√
Q.3 Evaluate :
(i) sin263∘+sin227∘cos217∘+cos273∘
(ii) sin 25° cos 65° + cos25° sin65° [Since,sin(90∘−θ)=cosθ]
Sol. (i) Here, sin63° = sin(90° – 27°) = cos27°
and cos17° = cos(90° – 73°) = sin 73° [Since,cos(90∘−θ)=sinθ]
Therefore, sin263∘+sin227∘cos217∘+cos273∘=cos227∘+sin227∘sin273∘+cos273∘
=11=1
[Since,cos2A+sin2A=1]
(ii) sin25°cos65°+cos25°sin65°
= sin(90°– 65°). cos65° + cos(90°– 65°) sin65°
= cos65° cos65° + sin 65° sin65°
[Since,sin(90∘−θ)=cosθ]
= cos265∘+sin265∘=1 [Since,cos(90∘−θ)=sinθ]
Q.4 Choose the correct option. Justify your choice :
(i) 9sec2A−9tan2A=
(A) 1 (B) 9
(C) 8 (D) 0
(ii) (1+ tanθ + secθ)(1 + cos θ – cosec θ) =
(A) 0 (B) 1
(C) 2 (D) None of these
(iii) (secA + tanA)(1 – sinA) =
(A) secA (B) sinA
(C) cosecA (D) cosA
(iv) 1+tan2A1+cot2A=
(A) sec2A (B) –1
(C) cot2A (D) none of these
Sol. (i) (B), because
9sec2A−9tan2A=9(sec2A−tan2A)
= 9 × 1 = 9 [Since,1+tan2A=sec2A]
(ii) (C), because
(1+tanθ+secθ)(1+cotθ−cosecθ)
=(1+sinθcosθ+1cosθ)(1+cosθsinθ−1sinθ)
=(cosθ+sinθ+1cosθ)(sinθ+cosθ−1sinθ)
= (cosθ+sinθ)2−1sinθcosθ [Since,(A+B)(A−B)=A2−B2]
= (cos2θ+sin2θ)−2cosθsinθ−1sinθcosθ [Since,sin2θ+cos2θ=1]
= 1+2cosθsinθ−1sinθcosθ=2cosθsinθsinθcosθ=2
(iii) (D), because
(secA + tanA) (1 – sinA)
= (1cosA+sinAcosA)(1−sinA)
= (1+sinAcosA)(1−sinA) [Since,(A+B)(A−B)=A2−B2]
=1−sin2AcosAcos2AcosA=cosA[Since,sin2A+cos2A=1]
(iv) (D), because
1+tan2A1−cot2A=1+tan2A1+1tan2A=1+tan2Atan2A+1tan2A
=(1+tan2A)×tan2A1+tan2A=tan2A
Q.5 Prove the following identities, where the angles involved are acute angles for which the expressions are defined :
(i) (cosecθ−cotθ)2=1−cosθ1+cosθ
(ii) cosA1+sinA+1+sinAcosA=2secA
(iii) tanθ1−cotθ+cotθ1−tanθ=1+secθcosecθ
(iv) 1+secAsecA=sin2A1−cosA
(v) cosA−sinA+1cosA+sinA−1=cosecA+cotA, using the identity cosec2A=1+cot2A
(vi) 1+sinA1−sinA=−−−−−−−√secA+tanA
(vii) sinθ−2sin3θ2cos3θ−cosθ=tanθ
(viii) (sinA+cosecA)2+(cosA+secA)2=7+tan2A+cot2A
(ix) (cosecA – sinA)(secA – cosA) = 1tanA+cotA
(x) (1+tan2A1+cot2A)=(1−tanA1−cot2A)2=tan2A
Sol. (i) We have,
L.H.S. = (cosecθ−cotθ)2
=(1sinθ−cosθsinθ)2=(1−cosθsinθ)2
=(1−cosθ)2sin2θ=(1−cosθ)21−cos2θ [Since,sin2θ=1−cos2θ]
=(1−cosθ)2(1−cosθ)(1+cosθ)=1−cosθ1+cosθ
R.H.S. [Since,A2−B2=(A+B)(A−B)]
(ii) We have,
L.H.S. = cosA1+sinA+1+sinAcosA
= cos2A+(1+sinA)2cosA(1+sinA)
= cos2A+1+2sinA+sin2AcosA(1+sinA)
= (cos2A+sin2A)+1+2sinAcosA(1+sinA)
= 1+1+2sinAcosA(1+sinA)[Sincesin2A+cos2A=1]
= 2+2sinAcosA(1+sinA)=2(1+sinA)cosA(1+sinA)
= 2cosA=2secA=R.H.S.
(iii) We have,
L.H.S. = tanθ1−cotθ+cotθ1−tanθ
= tanθ1−1tanθ+1tanθ1−tanθ
=tanθtanθ−1tanθ+1tanθ(1−tanθ)
=tan2θtanθ−1+1tanθ(1−tanθ)
=tan2θtanθ−1−1tanθ(tanθ−1)
= tan3θ−1tanθ(tanθ−1)
= (tanθ−1)(tan2θ+tanθ+1)tanθ(tanθ−1)
[Since,a3−b3=(a−b)(a2+ab+b2)]
= tan2θ+tanθ+1tan2θ
= tan2θtanθ+tanθtanθ+1tanθ
= tanθ+1+cotθ=1+tanθ+cotθ
= 1+sinθcosθ+cosθsinθ
= 1+sin2θ+cos2θcosθ
= 1+1sinθcosθ=1+cosecθsecθ
= R.H.S.
(iv) R.H.S. = sin2A1−cosA=1−cos2A1−cosA
[Since,sin2A=1−cos2A]
= (1−cosA)(1+cosA)1−cosA=1+cosA
[Since,A2−B2=(A+B)(A−B)]
= 1+1secA=1+secAsecA=L.H.S.
(v) L.H.S. = cosA−sinA+1cosA+sinA−1=cosA−sinA+1sinAcosA+sinA−1sinA
= cosA−1+cosecAcosA+1−cosecA
[Since,1+cot2A=cosec2A]
=cotA+cosecA−(cosec2A−cot2A)cotA−cosecA+1
= cotA+cosecA−(cosecA+cotA)(cosecA−cotA)cotA−cosecA+1
[SinceA2−B2=(A+B)(A−B)]
Taking common(cosecA + cotA)
= (cosecA+cotA)(1−cosecA+cot)(cotA−cosecA+1)
= cosec A + cot A
= R.H.S.
(vi) We have,
L.H.S. = 1+sinA1−sinA−−−−−√=1+sinA1−sinA×1+sinA1+sinA−−−−−−−−−−−−−√
[Multiplying and dividing by ] 1+sinA−−−−−−−√
= (1+sinA)21−sin2A−−−−−−−√=(1+sinA)2cos2A−−−−−−−√ [Since,sin2A+cos2A=1]
= (1+sinAcosA)−−−−−−−−√2=1+sinAcosA
= 1cosA+sinAcosA=secA+tanA
= R.H.S. [Since,tanA=sinAcosA]
(vii) We, have,
L.H.S. = sinθ−2sin3θ2cos3θ−cosθ=sinθ(1−2sin2θ)cosθ(2cos2θ−1)
= tanθ[1−2sin2θ2(1−sin2θ)−1]
= tanθ[1−2sin2θ2−2sin2θ−1]
= tanθ[1−2sin2θ1−2sin2θ]=tanθ×1
= tanθ = R.H.S.
(viii) We have,
L.H.S. = (sinA+cosecA)2+(cosA+secA)2
= (sin2A+cosec2A+2sinAcosecA)+(cos2A+sec2A+2cosAsecA)
= (sin2A+cosec2A+2sinA.1sinA)+(cos2A+sec2A+2cosA.1cosA)
= (sin2A+cosec2A+2)+(cos2A+sec2A+2)
= sin2A+cos2A+cosec2A+sec2A+4 [Since,sin2A+cos2A=1]
= 1+(1+cot2A)+(1+tan2A)+4
= 7+tan2A+cot2A
= [Since,cosec2A=1+cot2Aandsec2A=1+tan2A]
= R.H.S.
(ix) We have,
L.H.S. = (cosec A – sinA) (secA – cosA)
= (1sinA−sinA)(1cosA−cosA)
= (1−sin2AsinA)(1−cos2AcosA)
= cos2AsinA×sin2AcosA
= sinA cosA
= sinAcosAsin2A+cos2A [Since,sin2A+cos2A=1]
Dividing Numerator and Denominator by sinA cosA
sinAcosAsinAcosAsin2AsinAcosA+cos2AsinAcosA
= 1sinAcosA+cosAsinA
= 1tanA+cotA = R.H.S.
(x) We have,
L.H.S. = (1+tan2A1+cot2A)=sec2Acosec2A
= 1cos2A×sin2A1=tan2A
R.H.S. = (1−tanA1−cotA)2=(1−tanA1−1tanA)2
= (1−tanAtanA−1tanA)2=(−tanA)2=tan2A
Therefore, L.H.S. = R.H.S.
6 Comments
How we access live tutorial classes please tell me
For any information regarding live class please call us at 8287971571
I am not able to access any test of coordinate geometry, can you pls resolve the issue?
We have fixed the issue. Please feel free to call us at 8287971571 if you face such type of issues.
Hi!
I am a student in class 10th and ive noticed that you dont give full courses on your youtube channel. I mean, its understandable. But we request you to at least put full course of only one chapter on youtube so that we can refer to that. Only one from the book Because your videos are very good and they enrich our learning.
Please give this feedback a chance and consider our request.
Dronstudy lover,
Ananyaa
Great article, the information provided to us. Thank you