• Home
  • Courses
  • Online Test
  • Contact
    Have any question?
    +91-8287971571
    contact@dronstudy.com
    Login
    DronStudy
    • Home
    • Courses
    • Online Test
    • Contact

      Class 12 MATHS – JEE

      • Home
      • All courses
      • Class 12
      • Class 12 MATHS – JEE
      CoursesClass 12MathsClass 12 MATHS – JEE
      • 1.Relations and Functions
        11
        • Lecture1.1
          Revision – Functions and its Types 38 min
        • Lecture1.2
          Revision – Functions Types 17 min
        • Lecture1.3
          Revision – Sum Related to Relations 04 min
        • Lecture1.4
          Revision – Sums Related to Relations, Domain and Range 22 min
        • Lecture1.5
          Cartesian Product of Sets, Relation, Domain, Range, Inverse of Relation, Types of Relations 34 min
        • Lecture1.6
          Functions, Intervals 39 min
        • Lecture1.7
          Domain 01 min
        • Lecture1.8
          Problem Based on finding Domain and Range 39 min
        • Lecture1.9
          Types of Real function 31 min
        • Lecture1.10
          Odd & Even Function, Composition of Function 32 min
        • Lecture1.11
          Chapter Notes – Relations and Functions
      • 2.Inverse Trigonometric Functions
        16
        • Lecture2.1
          Revision – Introduction, Some Identities and Some Sums 16 min
        • Lecture2.2
          Revision – Some Sums Related to Trigonometry Identities, trigonometry Functions Table and Its Quadrants 35 min
        • Lecture2.3
          Revision – Trigonometrical Identities-Some important relations and Its related Sums 16 min
        • Lecture2.4
          Revision – Sums Related to Trigonometrical Identities 18 min
        • Lecture2.5
          Revision – Some Trigonometric Identities and its related Sums 42 min
        • Lecture2.6
          Revision – Trigonometry Equations 44 min
        • Lecture2.7
          Revision – Sum Based on Trigonometry Equations 08 min
        • Lecture2.8
          Introduction to Inverse Trigonometry Function, Range, Domain, Question based on Principal Value 37 min
        • Lecture2.9
          Property -1 of Inverse trigo function 28 min
        • Lecture2.10
          Property -2 to 4 of Inverse trigo function 48 min
        • Lecture2.11
          Questions based on properties of Inverse trigo function 19 min
        • Lecture2.12
          Question based on useful substitution 27 min
        • Lecture2.13
          Numerical problems 19 min
        • Lecture2.14
          Numerical problems 24 min
        • Lecture2.15
          Numerical problems , introduction to Differentiation 44 min
        • Lecture2.16
          Chapter Notes – Inverse Trigonometric Functions
      • 3.Matrices
        9
        • Lecture3.1
          What is matrix 26 min
        • Lecture3.2
          Types of matrix 28 min
        • Lecture3.3
          Operations of matrices 28 min
        • Lecture3.4
          Multiplication of matrices 29 min
        • Lecture3.5
          Properties of a matrices 44 min
        • Lecture3.6
          Numerical problems 19 min
        • Lecture3.7
          Solution of simultaneous linear equation 28 min
        • Lecture3.8
          Solution of simultaneous / Homogenous linear equation 24 min
        • Lecture3.9
          Chapter Notes – Matrices
      • 4.Determinants
        6
        • Lecture4.1
          Introduction of Determinants 23 min
        • Lecture4.2
          Properties of Determinants 29 min
        • Lecture4.3
          Numerical problems 15 min
        • Lecture4.4
          Numerical problems 16 min
        • Lecture4.5
          Applications of Determinants 17 min
        • Lecture4.6
          Chapter Notes – Determinants
      • 5.Continuity
        7
        • Lecture5.1
          Introduction to continuity 28 min
        • Lecture5.2
          Numerical problems 17 min
        • Lecture5.3
          Numerical problems 22 min
        • Lecture5.4
          Basics of continuity 26 min
        • Lecture5.5
          Numerical problems 17 min
        • Lecture5.6
          Numerical problems 11 min
        • Lecture5.7
          Chapter Notes – Continuity and Differentiability
      • 6.Differentiation
        14
        • Lecture6.1
          Introduction to Differentiation 27 min
        • Lecture6.2
          Important formula’s 29 min
        • Lecture6.3
          Numerical problems 29 min
        • Lecture6.4
          Numerical problems 31 min
        • Lecture6.5
          Differentiation by using trigonometric substitution 21 min
        • Lecture6.6
          Differentiation of implicit function 21 min
        • Lecture6.7
          Differentiation of logarthmetic function 31 min
        • Lecture6.8
          Differentiation of log function 25 min
        • Lecture6.9
          Infinite series & parametric function 26 min
        • Lecture6.10
          Infinite series & parametric function 27 min
        • Lecture6.11
          Higher order derivatives 27 min
        • Lecture6.12
          Differentiation of function of a function 16 min
        • Lecture6.13
          Numerical problems 27 min
        • Lecture6.14
          Numerical problems 04 min
      • 7.Mean Value Theorem
        4
        • Lecture7.1
          Lagrange theorem 24 min
        • Lecture7.2
          Rolle’s theorem 20 min
        • Lecture7.3
          Lagrange theorem 24 min
        • Lecture7.4
          Rolle’s theorem 20 min
      • 8.Applications of Derivatives
        6
        • Lecture8.1
          Rate of change of Quantities 30 min
        • Lecture8.2
          Rate of change of Quantities 18 min
        • Lecture8.3
          Rate of change of Quantities 18 min
        • Lecture8.4
          Approximation 10 min
        • Lecture8.5
          Approximation 05 min
        • Lecture8.6
          Chapter Notes – Applications of Derivatives
      • 9.Increasing and Decreasing Function
        5
        • Lecture9.1
          Introduction 36 min
        • Lecture9.2
          Numerical Problem 26 min
        • Lecture9.3
          Numerical Problem 22 min
        • Lecture9.4
          Numerical Problem 22 min
        • Lecture9.5
          Numerical Problem 21 min
      • 10.Tangents and Normal
        3
        • Lecture10.1
          Introduction 34 min
        • Lecture10.2
          Numerical Problems 32 min
        • Lecture10.3
          Angle of intersection of two curves 27 min
      • 11.Maxima and Minima
        10
        • Lecture11.1
          Introduction 28 min
        • Lecture11.2
          Local maxima & Local Minima 27 min
        • Lecture11.3
          Numerical Problems 37 min
        • Lecture11.4
          Maximum & minimum value in closed interval 19 min
        • Lecture11.5
          Application of Maxima & Minima 10 min
        • Lecture11.6
          Application of Maxima & Minima 14 min
        • Lecture11.7
          Numerical Problems 17 min
        • Lecture11.8
          Numerical Problems 18 min
        • Lecture11.9
          Numerical Problems 15 min
        • Lecture11.10
          Numerical Problems 14 min
      • 12.Integrations
        19
        • Lecture12.1
          Introduction to Indefinite Integration 37 min
        • Lecture12.2
          Integration by substitution 25 min
        • Lecture12.3
          Numerical problems on Substitution 39 min
        • Lecture12.4
          Numerical problems on Substitution 04 min
        • Lecture12.5
          Integration various types of particular function (Identities) 31 min
        • Lecture12.6
          Integration by parts-1 18 min
        • Lecture12.7
          Integration by parts-2 10 min
        • Lecture12.8
          Integration by parts-2 16 min
        • Lecture12.9
          Integration by parts-2 08 min
        • Lecture12.10
          ILATE Rule 12 min
        • Lecture12.11
          Integration of some special function 07 min
        • Lecture12.12
          Integration of some special function 06 min
        • Lecture12.13
          Integration by substitution using trigonometric 14 min
        • Lecture12.14
          Evaluation of some specific Integration 12 min
        • Lecture12.15
          Evaluation of some specific Integration 29 min
        • Lecture12.16
          Integration by partial fraction 27 min
        • Lecture12.17
          Integration of some special function 11 min
        • Lecture12.18
          Numerical Problems based on partial fraction 20 min
        • Lecture12.19
          Chapter Notes – Integrals
      • 13.Definite Integrals
        11
        • Lecture13.1
          Introduction 24 min
        • Lecture13.2
          Properties of Definite Integration 19 min
        • Lecture13.3
          Numerical problem based on properties 22 min
        • Lecture13.4
          Area under the curve 16 min
        • Lecture13.5
          Area under the curve (Ellipse) 20 min
        • Lecture13.6
          Area under the curve (Parabola) 10 min
        • Lecture13.7
          Area under the curve (Parabola & Circle) 40 min
        • Lecture13.8
          Area bounded by lines 10 min
        • Lecture13.9
          Numerical problems 25 min
        • Lecture13.10
          Area under the curve (Circle ) 02 min
        • Lecture13.11
          Chapter Notes – Application of Integrals
      • 14.Differential Equations
        6
        • Lecture14.1
          Introduction to chapter 38 min
        • Lecture14.2
          Solution of D.E. – Variable separation methods 14 min
        • Lecture14.3
          Solution of D.E. – Variable separation methods 27 min
        • Lecture14.4
          Solution of D.E. – Second order 21 min
        • Lecture14.5
          Homogeneous D.E. 31 min
        • Lecture14.6
          Chapter Notes – Differential Equations
      • 15.Vectors
        12
        • Lecture15.1
          Introduction , Basic concepts , types of vector 34 min
        • Lecture15.2
          Position vector, distance between two points, section formula 44 min
        • Lecture15.3
          Numerical problem 02 min
        • Lecture15.4
          collinearity of points and coplanarity of vector 34 min
        • Lecture15.5
          Direction cosine 18 min
        • Lecture15.6
          Projection , Dot product, Cauchy- Schwarz inequality 24 min
        • Lecture15.7
          Numerical problem (dot product) 20 min
        • Lecture15.8
          Vector (Cross) product , Lagrange’s Identity 15 min
        • Lecture15.9
          Numerical problem (cross product) 38 min
        • Lecture15.10
          Numerical problem (cross product) 06 min
        • Lecture15.11
          Numerical problem (cross product) 22 min
        • Lecture15.12
          Chapter Notes – Vectors
      • 16.Three Dimensional Geometry
        7
        • Lecture16.1
          Introduction to 3D, axis in 3D, plane in 3D, Distance between two points 32 min
        • Lecture16.2
          Numerical problems , section formula , centroid of a triangle 35 min
        • Lecture16.3
          projection , angle between two lines 40 min
        • Lecture16.4
          Numerical Problem based on Direction ratio & cosine 02 min
        • Lecture16.5
          locus of any point 15 min
        • Lecture16.6
          Numerical Problem based on locus 16 min
        • Lecture16.7
          Chapter Notes – Three Dimensional Geometry
      • 17.Direction Cosine
        2
        • Lecture17.1
          Introduction 34 min
        • Lecture17.2
          Angle Between two vectors 25 min
      • 18.Plane
        3
        • Lecture18.1
          Introduction to plane , general equation of a plane , normal form 31 min
        • Lecture18.2
          Angle between two planes 30 min
        • Lecture18.3
          Distance of a point from a plane 29 min
      • 19.Straight Lines
        22
        • Lecture19.1
          Revision – Introduction, Equation of Line, Slope or Gradient of a line 24 min
        • Lecture19.2
          Revision – Sums Related to Finding the Slope, Angle Between two Lines 22 min
        • Lecture19.3
          Revision – Cases for Angle B/w two Lines, Different forms of Line Equation 23 min
        • Lecture19.4
          Revision – Sums Related Finding the Equation of Line 27 min
        • Lecture19.5
          Revision – Sums based on Previous Concepts of Straight line 32 min
        • Lecture19.6
          Revision – Parametric Form of a Straight Line 16 min
        • Lecture19.7
          Revision – Sums Related to Parametric Form of a Straight Line 17 min
        • Lecture19.8
          Revision – Sums Based on Concurrent of lines, Angle b/w Two Lines 45 min
        • Lecture19.9
          Revision – Different condition for Angle b/w two lines 04 min
        • Lecture19.10
          Revision – Sums Based on Angle b/w Two Lines 36 min
        • Lecture19.11
          Revision – Equation of Straight line Passes Through a Point and Make an Angle with Another Line 09 min
        • Lecture19.12
          Revision – Sums Based on Equation of Straight line Passes Through a Point and Make an Angle with Another Line 15 min
        • Lecture19.13
          Revision – Sums Based on Equation of Straight line Passes Through a Point and Make an Angle with Another Line 17 min
        • Lecture19.14
          Revision – Finding the Distance of a point from the line 35 min
        • Lecture19.15
          Revision – Sum Based on Finding the Distance of a point from the line and B/w Two Parallel Lines 33 min
        • Lecture19.16
          Introduction to straight line , symmetric form , Angle between the lines 27 min
        • Lecture19.17
          Numerical Problem 18 min
        • Lecture19.18
          Angle between two lines 32 min
        • Lecture19.19
          Unsymmetric form of Line 26 min
        • Lecture19.20
          Numerical problem , perpendicular distance of a point from a line 22 min
        • Lecture19.21
          Numerical Problem 21 min
        • Lecture19.22
          Numerical problem , Condition for a line lie on a plane 26 min
      • 20.Straight Lines (Vector)
        4
        • Lecture20.1
          Vector and Cartesian equation of a straight line 27 min
        • Lecture20.2
          Angle between two straight line 25 min
        • Lecture20.3
          Numerical problems 37 min
        • Lecture20.4
          Shortest Distance between two lines 22 min
      • 21.Linear Programming
        5
        • Lecture21.1
          Introduction to L.P. 30 min
        • Lecture21.2
          Numerical Problems 43 min
        • Lecture21.3
          Numerical Problems 23 min
        • Lecture21.4
          Numerical Problems 17 min
        • Lecture21.5
          Chapter Notes – Linear Programming
      • 22.Probability
        23
        • Lecture22.1
          Introduction to probability 41 min
        • Lecture22.2
          Types of events 42 min
        • Lecture22.3
          Numerical problems 30 min
        • Lecture22.4
          Conditional probability 12 min
        • Lecture22.5
          Numerical problems 09 min
        • Lecture22.6
          Numerical problems (conditional Probability) 04 min
        • Lecture22.7
          Numerical problems (conditional Probability) 06 min
        • Lecture22.8
          Numerical problems (conditional Probability) 05 min
        • Lecture22.9
          Numerical problems (conditional Probability) 06 min
        • Lecture22.10
          Bayes’ Theorem 17 min
        • Lecture22.11
          Numerical problem ( conditional Probability) 04 min
        • Lecture22.12
          Numerical problem ( Baye’s Theorem) 19 min
        • Lecture22.13
          Numerical problem ( Baye’s Theorem) 18 min
        • Lecture22.14
          Numerical problem ( Baye’s Theorem) 10 min
        • Lecture22.15
          Mean and Variance of a random variable 09 min
        • Lecture22.16
          Mean and Variance of a random variable 09 min
        • Lecture22.17
          Mean and Variance of a random variable 08 min
        • Lecture22.18
          Mean and Variance of a discrete random variable 07 min
        • Lecture22.19
          Numerical problem 18 min
        • Lecture22.20
          Bernoulli’s Trials & Binomial Distribution 11 min
        • Lecture22.21
          Numerical problem 12 min
        • Lecture22.22
          Mean and Variance of Binomial Distribution 05 min
        • Lecture22.23
          Chapter Notes – Probability
      • 23.Limits
        4
        • Lecture23.1
          Introduction to limits 35 min
        • Lecture23.2
          Numerical problems 27 min
        • Lecture23.3
          Rationalization 33 min
        • Lecture23.4
          Limits in trigonometry 29 min
      • 24.Partial Fractions
        4
        • Lecture24.1
          Introduction to partial fraction 27 min
        • Lecture24.2
          Partial Fractions 02 29 min
        • Lecture24.3
          Partial Fractions 03 17 min
        • Lecture24.4
          Improper partial fraction 20 min

        Chapter Notes – Integrals

        Let f(x) be a function. Then, the collection of all its primitives is called the indefinite integral of f(x) and is denoted by ∫f(x)dx. Integration as inverse operation of differentiation. If d/dx {φ(x)) = f(x), ∫f(x)dx = φ(x) + C, where C is called the constant of integration or arbitrary

        Symbols f(x) → Integrand
        f(x)dx → Element of integration
        ∫→ Sign of integral
        φ(x) → Anti-derivative or primitive or integral of function f(x)
        The process of finding functions whose derivative is given, is called anti-differentiation or integration.

        Integrals

        Geometrical Interpretation of Indefinite Integral

        If d/dx {φ(x)} = f (x), then ∫f(x)dx = φ(x) + C. For different values of C, we get different functions, differing only by a constant. The graphs of these functions give us an infinite family of curves such that at the points on these curves with the same x-coordinate, the tangents are parallel as they have the same slope φ'(x) = f(x).

        Geometrical Interpretation of Indefinite Integral

        Consider the integral of 1/2√x
        i.e., ∫1/2√xdx = √x + C, C ∈ R

        Above figure shows some members of the family of curves given by y = + C for different C ∈ R.

        Comparison between Differentiation and Integration

        (i) Both differentiation and integration are linear operator on functions as

        d/dx {af(x) ± bg(x)} = a d/dx{f(x) ± d/dx{g(x)} and ∫[a.f(x) ± b.g(x)dx = a ∫f(x)dx ± b ∫g(x)dx

        (ii) All functions are not differentiable, similarly there are some function which are not integrable.
        (iii) Integral of a function is always discussed in an interval but derivative of a function can be
        (iv) Geometrically derivative of a function represents slope of the tangent to the graph of function at the point. On the other hand, integral of a function represents an infinite family of curves placed parallel to each other having parallel tangents at points of intersection of the curves with a line parallel to Y-axis.

        Rules of Integration

        Rules of Integration

        Method of Substitution

        Method of Substitution

        Basic Formulae Using Method of Substitution
        Basic Formulae Using Method of Substitution

         

        If the degree of the numerator of the integrand is equal to or greater than that of denominator divide the numerator by the denominator until the degree of the remainder is less than that of denominator i.e.,
        (Numerator / Denominator) = Quotient + (Remainder / Denominator)

        Trigonometric Identities Used for Conversion of Integrals into the Integrable Forms

        Trigonometric Identities Used for Conversion of Integrals into the Integrable Forms

        Standard Substitution

        Standard Substitution

        Special Integrals

        Special Integrals

        Important Forms to be converted into Special Integrals
        (i) Form I

        Important Forms to be converted into Special Integrals

        (ii) Form II

        Important Forms to be converted into Special Integrals.

        Put px + q = λd / dx (ax2 + bx + c) + mu; Now, find values of λ and mu; and integrate.

        (iii) Form III

        Important Forms to be converted into Special Integrals

        when P(x) is a polynomial of degree 2 or more carry out the dimension and express in the form P(x) / (ax2 + bx + c) = Q(x) + R(x) / (ax2 + bx + c), where R(x) is a linear expression or constant, then integral reduces to the form discussed earlier.

        (iv) Form IV

        Important Forms to be converted into Special Integrals

        After dividing both numerator and denominator by x2, put x – a2 / x = t or x + (a2 / x) = t.

        (v) Form V

        Important Forms to be converted into Special Integrals

        To evaluate the above type of integrals, we proceed as follow (a) Divide numerator and denominator by cos2x. (b) Rreplace sec2x, if any in denominator by 1 + tan2 x. (c) Put tan x = t, then sec2xdx = dt

        (vi) Form VI

        Important Forms to be converted into Special Integrals

        (vii) Form VII

        Important Forms to be converted into Special Integrals

        (viii) Form VIII

        Important Forms to be converted into Special Integrals

        (ix) Form IX

        Important Forms to be converted into Special Integrals

        To evaluate the above type of integrals, we proceed as follows

        • Divide numerator and denominator by x2
        • Express the denominator of integrands in the form of (x + 1/x)2 ± k2
        • Introduce (x + 1/x) or d (x – 1/x) or both in numerator.
        • Put x + 1/x = t or x – 1/x = t as the case may be.
        • Integral reduced to the form of ∫ 1 / x2 + a2dx or ∫ 1 / x2 + a2dx

        (x) Form X

        Important Forms to be converted into Special Integrals

        Integration by Parts

        This method is used to integrate the product of two functions. If f(x) and g(x) be two integrable functions, then

        Integration by Parts

        (i) We use the following preferential order for taking the first function. Inverse→ Logarithm→ Algebraic → Trigonometric→ Exponential. In short we write it HATE.
        (ii) If one of the function is not directly integrable, then we take it a the first function.
        (iii) If only one function is there, i.e., ∫log x dx, then 1 (unity) is taken as second function.
        (iv) If both the functions are directly integrable, then the first function is chosen in such a way that its derivative vanishes easily or the function obtained in integral sign is easilY integrable.

        Integral of the Form

        Integral of the Form

        Integration Using Partial Fractions

        (i) If f(x) and g(x) are two polynomials, then f(x) / g(x) defines a rational algebraic function of x. If degree of f(x) < degree of g(x), then f(x) / g(x) is called a proper rational function.
        (ii) If degree of f(x) ≥ degree of g(x), then f(x) /g(x) is called an improper g(x) rational function.
        (iii) If f(x) / g(x) isan improper rational function, then we divide f(x) by g(x) g(x) and convert it into a proper rational function as f(x) / g(x) = φ(x) + h(x) / g(x).
        (iv) Any proper rational function f(x) / g(x) can be expressed as the sum of rational functions each having a simple factor of g(x). Each such fraction is called a partial fraction and the process of obtaining them, is called the resolution or decomposition of f(x) /g(x) partial fraction.

         Integral of the Form

        Shortcut for Finding Values of A, B and C etc.

        Case I. When g(x) is expressible as the product of non-repeated line factors.

        Shortcut for Finding Values of A, B and C etc.

        Trick To find Ap put x = a in numerator and denominator after P deleting the factor (x — ap).

        Case II. When g(x) is expressible as product of repeated linear factors.

        Shortcut for Finding Values of A, B and C etc.

        Here, all the constant cannot be calculated by using the method in Case I. However, Bl, B2, B3, … , Bn can be found using the same method i.e., shortcut can be applied only in the case of non-repeated linear factor.

        Integration of Irrational Algebraic Function

        Irrational function of the form of (ax + b)1/n and x can be evaluated by substitution (ax + b) = tn, thus

        Integration of Irrational Algebraic Function

        Integrals of the Type (bxm + bxn)P

        Case I. If P ∈ N (natural number) we expand the binomial theorem and integrate.

        Case II. If P ∈ Z (integers), put x = pk, where k denominator of m and n.

        Case III. If (m+1)/n is an integer, we put (a + bxn) = rk, where k is th denominator of the fraction.

        Integration of Hyperbolic Functions

        • ∫sinh x dx = cosh x + C
        • ∫cosh x dx = sinh x + C
        • ∫sech2x dx = tanh x + C
        • ∫cosech2x dx = – coth x + C
        • ∫sech x tanh x dx = – sech x + C
        • ∫cosech x coth x dx = – cosech x + C

        Case IV If {(m+1)/n} + P is an integer, we put (a + bxn) = rkxn is the denominator of the fraction p.

         

        Important points to be remmemberd

        Prev Numerical Problems based on partial fraction
        Next Introduction

        Leave A Reply Cancel reply

        Your email address will not be published. Required fields are marked *

        All Courses

        • Backend
        • Chemistry
        • Chemistry
        • Chemistry
        • Class 08
          • Maths
          • Science
        • Class 09
          • Maths
          • Science
          • Social Studies
        • Class 10
          • Maths
          • Science
          • Social Studies
        • Class 11
          • Chemistry
          • English
          • Maths
          • Physics
        • Class 12
          • Chemistry
          • English
          • Maths
          • Physics
        • CSS
        • English
        • English
        • Frontend
        • General
        • IT & Software
        • JEE Foundation (Class 9 & 10)
          • Chemistry
          • Physics
        • Maths
        • Maths
        • Maths
        • Maths
        • Maths
        • Photography
        • Physics
        • Physics
        • Physics
        • Programming Language
        • Science
        • Science
        • Science
        • Social Studies
        • Social Studies
        • Technology

        Latest Courses

        Class 8 Science

        Class 8 Science

        ₹8,000.00
        Class 8 Maths

        Class 8 Maths

        ₹8,000.00
        Class 9 Science

        Class 9 Science

        ₹10,000.00

        Contact Us

        +91-8287971571

        contact@dronstudy.com

        Company

        • About Us
        • Contact
        • Privacy Policy

        Links

        • Courses
        • Test Series

        Copyright © 2021 DronStudy Pvt. Ltd.

        Login with your site account

        Lost your password?

        Modal title

        Message modal