• Home
  • Courses
  • Online Test
  • Contact
    Have any question?
    +91-8287971571
    contact@dronstudy.com
    Login
    DronStudy
    • Home
    • Courses
    • Online Test
    • Contact

      Class 11 PHYSICS – JEE

      • Home
      • All courses
      • Class 11
      • Class 11 PHYSICS – JEE
      CoursesClass 11PhysicsClass 11 PHYSICS – JEE
      • 1.Basic Maths (1) : Vectors
        7
        • Lecture1.1
          Vector and Scalar, Representation of Vectors, Need for Co-ordinate System, Distance & Displacement 39 min
        • Lecture1.2
          Mathematics of Vectors, Triangle Law and Parallelogram Law 01 hour
        • Lecture1.3
          Addition More than Two Vectors, Subtraction of Vectors- Displacement vector 28 min
        • Lecture1.4
          Elementary Maths 14 min
        • Lecture1.5
          Unit Vectors, Special Unit Vectors, Resolution of Vectors 49 min
        • Lecture1.6
          Addition & Subtract using Unit Vectors, 3 D Vectors, Product of Vectors 54 min
        • Lecture1.7
          Chapter Notes – Basic Maths (1) : Vectors
      • 2.Basic Maths (2) : Calculus
        4
        • Lecture2.1
          Delta, Concept of Infinity, Time Instant Interval, Rate of Change, Position and Velocity 40 min
        • Lecture2.2
          Fundamental Idea of Differentiation- Constant Multiplication Rule, Sum/Difference Rule 29 min
        • Lecture2.3
          Trigonometric functions, Log function, Product Rule, Quotient Rule, Chain Rule 25 min
        • Lecture2.4
          Integration- Formulas of Integration, Use of Integration 45 min
      • 3.Unit and Measurement
        13
        • Lecture3.1
          Unit, History of Unit of Length-Metre, Properties of a Good Unit 21 min
        • Lecture3.2
          Concept of Derived Units, Fundamental Physics Quantities and Prefix of Units 38 min
        • Lecture3.3
          Unit-less Derived Quantities, Supplementary Quantities, Systems of Unit, Unit Conversion 39 min
        • Lecture3.4
          Dimensional Analysis, Dimension and Unit, Dimensionless Quantities 32 min
        • Lecture3.5
          Principle of Homogeneity 34 min
        • Lecture3.6
          Dimensionally Correct/Incorrect Equations, Use of Dimensional Analysis 41 min
        • Lecture3.7
          More Units of Length and Measurement of Length 47 min
        • Lecture3.8
          Errors and Their Reasons 36 min
        • Lecture3.9
          Combination of Errors 42 min
        • Lecture3.10
          Round Off, Significant Figures, Exponent Form of Numbers/Scientific Notation 27 min
        • Lecture3.11
          Chapter Notes – Unit and Measurement
        • Lecture3.12
          NCERT Solutions – Unit and Measurement
        • Lecture3.13
          Revision Notes – Unit and Measurement
      • 4.Motion (1) : Straight Line Motion
        10
        • Lecture4.1
          Meaning of Dimension; Position; Distance & Displacement 25 min
        • Lecture4.2
          Average Speed & Velocity; Instantaneous Speed & Velocity 31 min
        • Lecture4.3
          Photo Diagram; Acceleration- Direction of acceleration, Conceptual Examples 22 min
        • Lecture4.4
          Constant Acceleration; Equations of constant acceleration 43 min
        • Lecture4.5
          Average Velocity Examples and Concepts; Reaction Time 19 min
        • Lecture4.6
          Free Fall under Gravity 30 min
        • Lecture4.7
          Variable Acceleration; Derivation of Constant Acceleration Equations 48 min
        • Lecture4.8
          Chapter Notes – Motion (1) : Straight Line Motion
        • Lecture4.9
          NCERT Solutions – Straight Line Motion
        • Lecture4.10
          Revision Notes Straight Line Motion
      • 5.Motion (2) : Graphs
        3
        • Lecture5.1
          Tangent & Chord; Slope of Line- Chord & Tangent; Meaning of x/t graph, v/t graph, a/t graph 59 min
        • Lecture5.2
          Graph Conversion 51 min
        • Lecture5.3
          Area Under Curve 22 min
      • 6.Motion (3) : Two Dimensional Motion
        6
        • Lecture6.1
          Projectile on Level Ground 32 min
        • Lecture6.2
          Terms Related to Projectile on Level Ground 31 min
        • Lecture6.3
          Not Level to Level Projectile, Problem Solving, Dot Product 34 min
        • Lecture6.4
          Equation of Trajectory and Some Miscellaneous Questions 35 min
        • Lecture6.5
          Projectile on Inclined Plane 39 min
        • Lecture6.6
          Collision of Projectile and Avg. Acceleration in 2D Motion 16 min
      • 7.Motion (4) : Relative Motion
        7
        • Lecture7.1
          Reference Frame and Distance of Closest Approach 45 min
        • Lecture7.2
          Relative Motion in 2D 26 min
        • Lecture7.3
          Free Fall & Relative Motion 26 min
        • Lecture7.4
          Throwing Object from Moving Body 32 min
        • Lecture7.5
          Rain Problem (theory)- and Wind in Rain Problem 32 min
        • Lecture7.6
          River Based Problem 26 min
        • Lecture7.7
          Crossing River by Shortest Distance- Least Time to Cross River; Wind Problems; Relative Approach 27 min
      • 8.Newton's Laws of Motion
        8
        • Lecture8.1
          Force and Newton’s Laws 33 min
        • Lecture8.2
          Normal Reaction, Free Body Diagram(F.B.D), Normal on circular bodies, Mass and Weight 57 min
        • Lecture8.3
          Tension Force(Ideal Pulley, Clamp Force), Internal & External Force, Heavy Rope 01 hour
        • Lecture8.4
          Spring Force(Sudden Change, Series and Parallel Cutting of Spring) 01 hour
        • Lecture8.5
          Inertia and Non-Inertial Frames(Pseudo Force), Action-Reactin Pair, Monkey Problem 49 min
        • Lecture8.6
          Chapter Notes – Newton’s Laws of Motion
        • Lecture8.7
          NCERT Solutions – Laws of Motion
        • Lecture8.8
          Revision Notes Laws of Motion
      • 9.Constrain Motion
        3
        • Lecture9.1
          Force of mass-less body; Constrain Motion- Pulley Constrain 1 01 hour
        • Lecture9.2
          Pulley constrain 2, Alternate Method; Wedge Constrain- Proof 49 min
        • Lecture9.3
          Relative Constrain 01 hour
      • 10.Friction
        6
        • Lecture10.1
          Kinetic friction Theory- Theory, Angle of friction 32 min
        • Lecture10.2
          Static Friction Theory- Based on Example 2, Direction of friction Theory 01 min
        • Lecture10.3
          Some Advanced Examples 18 min
        • Lecture10.4
          Block Over Block Theory 01 hour
        • Lecture10.5
          Conveyor belt, Static and kinetic co-eff. of friction, Friction on wheels, Theoretical examples 27 min
        • Lecture10.6
          Chapter Notes – Friction
      • 11.Circular Motion
        6
        • Lecture11.1
          Ex. on Average Acc. and Angular Variables Theory and Ref. Frame 52 min
        • Lecture11.2
          Uniform Circular Motion and Centripetal Force 40 min
        • Lecture11.3
          Non-Uniform Center of Mass – Theory by Ex 2; Friction 01 hour
        • Lecture11.4
          Centrifugal Force and Banking of Roads 01 hour
        • Lecture11.5
          Radius of Curvature- Radius of Curvature; Axial Vector; Well of Death 34 min
        • Lecture11.6
          Chapter Notes – Circular Motion
      • 12.Work Energy Power
        15
        • Lecture12.1
          Work & its calculation and Work-done on curved path 31 min
        • Lecture12.2
          Work-done by Different Forces 01 hour
        • Lecture12.3
          Work Energy Theorem and W.E. th in Non-inertial frame, W.E. th and Time 23 min
        • Lecture12.4
          Work Energy Theorem for System 55 min
        • Lecture12.5
          Energy and Different Forms of Energy-and Energy of Chain; Potential Energy & Reference Frame 28 min
        • Lecture12.6
          Potential Energy Curve and Power 01 hour
        • Lecture12.7
          Normal Reaction, Vertical Circular Motion, Motion in Co-Concentric Spheres 27 min
        • Lecture12.8
          Motion on Outer Surface of Sphere, Motion on Inner Surface of Fixed Sphere 59 min
        • Lecture12.9
          Motion on Rope, Motion on Rod 32 min
        • Lecture12.10
          VCM – 1 31 min
        • Lecture12.11
          VCM – 2 01 hour
        • Lecture12.12
          VCM – 3 22 min
        • Lecture12.13
          Chapter Notes – Work Energy Power
        • Lecture12.14
          NCERT Solutions – Work Energy Power
        • Lecture12.15
          Revision Notes Work Energy Power
      • 13.Momentum
        9
        • Lecture13.1
          Introduction and Conservation of Momentum 35 min
        • Lecture13.2
          Impulsive Force – Characteristics of Impulsive Force 30 min
        • Lecture13.3
          Momentum Conservation in Presence of External Force – Two Steps Problems 41 min
        • Lecture13.4
          Questions Involving Momentum & Work Energy Theorem 27 min
        • Lecture13.5
          Collision – Head – on Collision and Special Cases of Head – on Collision 39 min
        • Lecture13.6
          Oblique Collision 24 min
        • Lecture13.7
          Collision of Ball with Flat Surface 38 min
        • Lecture13.8
          Impulse and Average Force 58 min
        • Lecture13.9
          Advanced Questions 50 min
      • 14.Center of Mass
        5
        • Lecture14.1
          Center of Mass (CM) Frame and Kinetic Energy in C – Frame 29 min
        • Lecture14.2
          Finding Center of Mass by Replacement Method and Finding CM of Plate with Hole 36 min
        • Lecture14.3
          Finding CM by Integration and CM of Some Standard Objects 57 min
        • Lecture14.4
          Motion of CM; Newton’s 2nd Law for CM; CM in Circular Motion 41 min
        • Lecture14.5
          Revision Notes Center of Mass
      • 15.Rotational Motion
        14
        • Lecture15.1
          Rigid Body – Motion of Rigid Body; Axis of Rotation 14 min
        • Lecture15.2
          Vector Product/ Cross Product; Torque 44 min
        • Lecture15.3
          Couple and Principle of Moments 48 min
        • Lecture15.4
          Pseudo Force and Toppling – Overturning of Car 01 hour
        • Lecture15.5
          Moment of Inertia 01 hour
        • Lecture15.6
          Parallel Axis Theorem; Perpendicular Axis Theorem; Quantitative Analysis; Radius of Gyra 01 hour
        • Lecture15.7
          Analogy b/w Transnational & Rotational Motion; Relation b/w Linear and Angular Velocity; Dynamics of Rotation 40 min
        • Lecture15.8
          Angular Momentum 30 min
        • Lecture15.9
          Angular Momentum of a Particle 32 min
        • Lecture15.10
          Rotational Collision 49 min
        • Lecture15.11
          Kinetic Energy, Work, Power; Potential Energy; Linear & Angular Acceleration; Hinge Force; Angular Impulse 02 hour
        • Lecture15.12
          Chapter Notes – Rotational Motion and Rolling Motion
        • Lecture15.13
          NCERT Solutions – Rotational Motion
        • Lecture15.14
          Revision Notes Rotational Motion
      • 16.Rolling Motion
        11
        • Lecture16.1
          Introduction to Rolling Motion 40 min
        • Lecture16.2
          Rolling Motion on Spool 24 min
        • Lecture16.3
          Friction 59 min
        • Lecture16.4
          Direction of Friction 01 hour
        • Lecture16.5
          Rolling on Moving Platform and Motion of Touching Spheres 44 min
        • Lecture16.6
          Rope Based Questions 55 min
        • Lecture16.7
          Work-done by Friction in Rolling Motion, Kinetic Energy in Transnational + Rotational Motion 29 min
        • Lecture16.8
          Angular Momentum in Rotation + Translation 01 hour
        • Lecture16.9
          Angular Collision 01 hour
        • Lecture16.10
          Instantaneous Axis of Rotation 50 min
        • Lecture16.11
          De-Lambart’s Theorem 50 min
      • 17.Gravitation
        8
        • Lecture17.1
          Gravitation force, Universal Law of Gravitation, Gravitational Force due to Hollow Sphere and Solid Sphere 35 min
        • Lecture17.2
          Acceleration due to Gravity and Rotation of Earth 42 min
        • Lecture17.3
          Potential Energy, Questions and Solutions 56 min
        • Lecture17.4
          Satellites, Circular Motion, Geostationary Satellites and Polar Satellites 42 min
        • Lecture17.5
          Polar Satellites, Weightlessness in Satellites, Trajectories and Kepler’s Laws 29 min
        • Lecture17.6
          Chapter Notes – Gravitation
        • Lecture17.7
          NCERT Solutions – Gravitation
        • Lecture17.8
          Revision Notes Gravitation
      • 18.Simple Harmonic Motion
        13
        • Lecture18.1
          Oscillatory Motion – Horizontal Spring Block System, Qualitative Analysis of Horizontal Spring System 33 min
        • Lecture18.2
          Quantitative Analysis of Horizontal Spring System; Frequency and Angular Frequency; Velocity and Acceleration; Mechanical Energy 47 min
        • Lecture18.3
          Relating Uniform Circular Motion and SHM and Phasor Diagram 30 min
        • Lecture18.4
          Equation of SHM and Problem Solving using Phasor Diagram 39 min
        • Lecture18.5
          Questions 40 min
        • Lecture18.6
          More Oscillating Systems – Vertical Spring Block System 41 min
        • Lecture18.7
          Angular Oscillations – Simple Pendulum 34 min
        • Lecture18.8
          Compound / Physical Pendulum, Torsional Pendulum, Equilibrium of Angular SHM; Differentiation by Chain Rule 38 min
        • Lecture18.9
          Energy Method to find Time Period 30 min
        • Lecture18.10
          Finding Amplitude of SHM 30 min
        • Lecture18.11
          Block Over Block and Elastic Rope 33 min
        • Lecture18.12
          Superposition of Horizontal SHMs and Perpendicular 30 min
        • Lecture18.13
          Damped Oscillations 28 min
      • 19.Waves (Part-1)
        11
        • Lecture19.1
          Wave, Plotting and Shifting of Curves, Meaning of y/t and y/x Graph, Wave is an Illusion!, 1D Wave on String 55 min
        • Lecture19.2
          Wave Equation, Analysis of Wave Equation and Wave Velocity 55 min
        • Lecture19.3
          Sinusoidal Wave (Harmonic Wave), Wave Equation for Sinusoidal Wave, Particle Velocity, Slope of Rope, Wave Velocity 01 hour
        • Lecture19.4
          Superposition of Waves 44 min
        • Lecture19.5
          Reflection of Waves 37 min
        • Lecture19.6
          Standing Waves 01 hour
        • Lecture19.7
          Tuning Fork, Sonometer and Equation of Standing Waves 54 min
        • Lecture19.8
          Energy in Waves 54 min
        • Lecture19.9
          Chapter Notes – Waves
        • Lecture19.10
          NCERT Solutions – Waves
        • Lecture19.11
          Revision Notes Waves
      • 20.Waves (Part-2)
        10
        • Lecture20.1
          Waves, Propagation of Sound Wave and Wave Equation 27 min
        • Lecture20.2
          Sound as a Pressure Wave 38 min
        • Lecture20.3
          Speed of Sound, Laplace Correction and Intensity of Sound Waves 59 min
        • Lecture20.4
          Spherical and Cylindrical Sound Waves 31 min
        • Lecture20.5
          Addition of Sin Functions, Interference of Sound Waves of Same Frequency, Interference of Coherent Sources 01 hour
        • Lecture20.6
          Quinke’s Apparatus 32 min
        • Lecture20.7
          Interference of Sound Waves of Slightly Different Frequencies (Beats) 39 min
        • Lecture20.8
          Reflection of Sound Waves, Standing Waves, End Correction 39 min
        • Lecture20.9
          Standing Waves in Terms of Pressure, Standing Waves on Rods, Kund’s Tube, Resonance Tube Experiment 49 min
        • Lecture20.10
          Doppler Effect, Reflection from Wall, Doppler Effect in 2 Dimension 01 hour
      • 21.Mechanical Properties of Solids
        6
        • Lecture21.1
          Rigid body,Strain, Stress,Hook’s Law 25 min
        • Lecture21.2
          Breaking Stress 26 min
        • Lecture21.3
          Shear Stress and Strain, Bulk Modulus, Elasticity and Plasticity, Stress-Strain Curve, Young’s Modulus 34 min
        • Lecture21.4
          Chapter Notes – Mechanical Properties of Solids
        • Lecture21.5
          NCERT Solutions – Mechanical Properties of Solids
        • Lecture21.6
          Revision Notes Mechanical Properties of Solids
      • 22.Thermal Expansion
        5
        • Lecture22.1
          Linear Expansion; Second’s Pendulum; Bimetallic Strip; Expansion of Hole; Thermal Stress 01 hour
        • Lecture22.2
          Areal/Superficial Expansion; Volume Expansion; Thermal Expansion of Liquid; Measurement of Temperature; Anomal 01 hour
        • Lecture22.3
          Arial/Superficial Expansion; Volume Expansion; Thermal Expansion of Liquid; Measurement of Temperature 38 min
        • Lecture22.4
          Chapter Notes – Thermal Expansion
        • Lecture22.5
          NCERT Solutions – Thermal Expansion
      • 23.Heat and Calorimetry
        2
        • Lecture23.1
          Internal Energy; Heat Energy; Thermal Equilibrium; Zeroth Law of Thermodynamics; Specific Heat Capacity; Latent Heat 48 min
        • Lecture23.2
          Mixing of Substances; Water Equivalent; Units; Calorimeter; Melting Point and Boiling Point; Sublimation 01 hour
      • 24.Heat Transfer
        6
        • Lecture24.1
          Conduction; Comparison between Charge Flow & Heat Flow 42 min
        • Lecture24.2
          Equivalent Thermal Conductivity; Heat Transfer and Calorimetry; Use of Integration; Length Variation 44 min
        • Lecture24.3
          Convection; Radiation, Black Body, Prevost Theory, Emissive Power & Emissivity, Kirchoff’s Law, Stefan – Boltzman Law 01 hour
        • Lecture24.4
          Newton’s Law of Cooling, Cooling Curve; Wien’s Displacement Law; Thermo Flask 48 min
        • Lecture24.5
          Chapter Notes – Heat Transfer
        • Lecture24.6
          Revision Notes Heat Transfer
      • 25.Kinetic Theory of Gases
        6
        • Lecture25.1
          Model of Gas,Postulates of Kinetic Theory of Gases, Ideal Gas, Mean free Path, Maxwell’s speed Distribution 37 min
        • Lecture25.2
          Volume, Pressure of Gases, Kinetic Energy, Temperature, Ideal Gas Equation 45 min
        • Lecture25.3
          Gas Laws, Internal energy of Gas, Degree of Freedom, Degree of Freedom of Mono-atomic and Diatomic Gas 56 min
        • Lecture25.4
          Chapter Notes – Kinetic Theory of Gases
        • Lecture25.5
          NCERT Solutions – Kinetic Theory of Gases
        • Lecture25.6
          Revision Notes Kinetic Theory of Gases
      • 26.Thermodynamics
        9
        • Lecture26.1
          State Equation; Thermodynamic Process; Process Equation & Graph; Work done by Gas 01 hour
        • Lecture26.2
          Heat – Work Equivalence; 1st Law of Thermodynamics; Adiabatic Process 57 min
        • Lecture26.3
          Workdone in Adiabatic Process; Specific Molar Heat Capacity 39 min
        • Lecture26.4
          Poly-tropic Process, Bulk Modulus; Free Expansion; Mixture of Gases 54 min
        • Lecture26.5
          Heat Engine, Refrigerator or Heat Pump, Energy Conservation, Kelvin-Plank Statement, Clausius Statement 01 hour
        • Lecture26.6
          Carnot Cycle, Reversible and Irreversible Process, Specific Heat Capacity of Solids and Water 01 hour
        • Lecture26.7
          Chapter Notes – Thermodynamics
        • Lecture26.8
          NCERT Solutions – Thermodynamics
        • Lecture26.9
          Revision Notes Thermodynamics
      • 27.Fluids
        14
        • Lecture27.1
          Introduction, Pressure of Liquid 47 min
        • Lecture27.2
          Manometer, Barometer 41 min
        • Lecture27.3
          Pascal Law, Hydraulic Lift 35 min
        • Lecture27.4
          Accelerated Liquid, Vertical and Horizontal Acceleration, Pressure Variation in Horizontally Accelerated Liquid 57 min
        • Lecture27.5
          Rotating Liquid, Rotating Liquid in U-Tube 28 min
        • Lecture27.6
          Archimedes’ Principle, Hollow Objects 59 min
        • Lecture27.7
          Apparent Weight, Variation of Liquid Force with Height 01 hour
        • Lecture27.8
          Multiple Liquids 34 min
        • Lecture27.9
          Center of Bouyancy 28 min
        • Lecture27.10
          Fluid Dynamics, Equation of Continuity 48 min
        • Lecture27.11
          Magnus Effect 37 min
        • Lecture27.12
          Venturimeter, Pitot Tube 27 min
        • Lecture27.13
          Questions and Solutions 31 min
        • Lecture27.14
          Chapter Notes – Fluids
      • 28.Surface Tension and Viscosity
        6
        • Lecture28.1
          Surface Tension, Surface Energy 52 min
        • Lecture28.2
          Force of Cohesion, Force of Adhesion, Angle of Contact, Radius of Meniscus, Capillary Rise 54 min
        • Lecture28.3
          Pressure Difference Across Meniscus, Variation of Surface tension with Temperature 27 min
        • Lecture28.4
          Viscous Force 35 min
        • Lecture28.5
          Terminal Velocity, Velocity Gradient, Renolds Number, Turbulent Flow, Streamline Flow 41 min
        • Lecture28.6
          Chapter Notes – Surface Tension and Viscosity

        Chapter Notes – Heat Transfer

        Modes of Transference of Heat

        Heat can be transferred from one place to another by three different methods, namely, conduction, convection and radiation. Conduction usually takes place in solids, convection in liquids and gases and no medium is required for radiation.

        Heat Conduction

        This transfer takes place due to molecular collisions. The molecules at one end of the rod gain heat from the heat source and their average kinetic energy increases. As these molecules collide with neighboring molecules having less kinetic energy, the energy is shared between these two groups. The kinetic energy of these neighboring molecules increases. As they collide with their neighbors on the colder side, they transfer energy to them. This way, heat is passed along the rod from molecule to molecule. The average position of a molecule does not change and hence, there is no mass movement of matter.
        The transfer of energy arising form the temperature difference between adjacent parts of a body is called heat conduction. Consider a slab of material of cross-sectional area A and thickness ΔQ, whose faces are kept at different temperatures. We measure the heat ΔQ that flows perpendicular to the faces during time ΔT. Experiment shows that ΔQ is proportional to ΔT and to the cross-sectional area A for a given temperature difference ΔT, and that ΔQ is proportional to ΔT/ΔX for a given ΔT and A, providing both ΔT and ΔX are small. That is,
        ΔQΔtαAΔTΔx
        In the limit of a slab of infinitesimal thickness dx, across which there is a temperature difference dT, we obtain the fundamental law of heat conduction

        dQdt=−kAdTdx

        HeredQdtis the time rate of heat transfer across the areaA,dTdxis called the temperature gradient, and k is a constant proportionality called the thermal conductivity. We choose the direction of heat flow to be the direction in which x increases; since heat flows in the direction of decreasing T, we introduce a minus sign in equation, (i.e., we wish dQdtto the positive when dTdxis negative).
        The phenomenon of heat conduction also shows that the concepts of heat and temperature are distinctly different. Different rods, having the same temperature difference between their ends, may transfer entirely different quantities of heat in the same time.

        Example 1

        A rod of length l with thermally insulated lateral surface consists of a material whose heat conductivity coefficient varies with temperature as K = a/T, where a is a constant. The ends of the rod are kept at temperatures T1, and T2 (T1 > T2). Find the function T(x) where x is the distance from the end whose temperature is T, and the heat flow density.

        Solution:

        Use fundamental law of heat conduction.
        q=−KAdTdx
        Heat flow density, H=qA=−KdTdx
        ⇒H∫0ldx=−∫T1T2αTdT Hl=αln∣∣T1T2∣∣
        Hence H=αlln∣∣T1T2∣∣
        Once again,H∫0xdx=−α∫T1TdTT⇒Hx=αln∣∣T1T∣∣⇒αxlln∣∣T1T2∣∣=αln∣∣T1T∣∣
        HenceT=T1(T2T1)x/l
        Alternative method.
        The rate of heat flow through a conductor is given byq=dQdt=KAΔTl
        where K is the average conductivity.
        kav=∫T1T2KdTT2−T1=αln∣∣T2T1∣∣T2−T1
        q=αln∣∣T2T1∣∣(T2−T1)[(T1−T2)Al]
        or heat flow density=qA=αlln∣∣T1T2∣∣            (1)
        Let T be the temperature at a distance x from the left end as shown in the figure.
        Then  k′av=αln∣∣TT1∣∣T−T1 and heat flow density is
        q′A=αxln∣∣T1T∣∣
        Equating (1) and (2) we get
        T = T1(T2T1)x/l

        Thermal and Electrical Conductivity

        There exists an useful analog between thermal conductivity and electrical conductivity

        Thermal Conduction

        dQdt=kA(T1−T2l)

        Heat flows from higher temperature to lower temperature

        The rate of heat flow is called the heat current.

        I = dQdt

        Thermal resistance is defined as

        RT  =lkA

        Ohm’s law for heat conduction may be stated as

                  I =T1−T2RT

        Electrical Conduction

        dqdt=Aρ(V1−V2l)

        Charges flow from higher potential to lower potential

        The rate of charge flow is called the electric current

                 I =dqdt

        Electrical resistance is defined as

              RE =ρlA

        Ohm’s law for electric conduction may be stated as

                    I =V1−V2RE

        Using the above analogy, a problem of heat conduction may be transformed into a problem of electrical conduction and can be easily using the formulae of electric circuits. Such as, for a series and parallel combination the equivalent resistance is defined a
        R=R1+R2 (series)
        1R=1R1+1R2 (parallel)

        Example 2

        Three rods of same length l and cross-sectional area A are joined in series between two heat reservoirs as shown in the figure. Their conductivity are 2K, K and K/2 respectively. Assuming that the conductors are logged from the surroundings find the temperatures T1 and T2 at the junction in the steady state condition.
        Solution:

        The thermal resistance of the three conductors are
        R1=12KA
        R2=1KA
        R3=2lKALet R1  = R then R2 = 2R  and R3 = 4R
        Thus, the electric analogy of the heat conduction system is shown in the figure. The equivalent resistance of the system is
        Req = R + 2R + 4R = 7R
        The heat current is
        I=TA−TBReq=100−07R=1007R
        The temperature T1 and T2 of the junction are
        T1=TA−IR=100−(1007R)R=6007oC
        T1=TA−I(R+2R)=100−(1007R)(3R)=4007oC

        Example 3

        A double – pane window consists of two glass sheets each of area 1m2  and thickness 0.01 m separated by a 0.05 m thick stagnant air space. In the steady state,  the room glass interface and the glass outdoor interface are at constant temperatures of 27°C and 0°C , respectively.
        (a) Calculate the rate of heat flow through the window pane.

        (b) Find the temperatures of other interfaces.
        Take, thermal conductivities  as Kglass = 0.8 Wm-1K-1 Kair = 0.08 Wm-1K
        -1 

        Solution:

        (a) Total thermal resistance is
        R=2t1K1A1+t2K2A2
        Here,  A1 = A2 = 1m2 , t1 = 0.01 m,
        t2 = 0.05 m;
        K1 = 0.8 Wm-1K-1,
        K2 = 0.08Wm-1K-1.
        R=2(0.01)(0.8)(1)+0.05(0.08)(1)=0.65W−1K
        Heat current = dQdt=ΔTR=27−00.65=41.5W

        (b) T1=27−(dQdt)t1K1A1=27−0.52=26.48∘C
        T2=0+(dqdt)t1K1A1=0.52∘C

        Heat Convection

        In convection, heat is transferred from one place to the other by the actual motion of heated material. For example, in a hot air blower, air is heated by a heating element and is blown by a fan. The air carries the heat wherever it goes. When water is kept in a vessel and heated on a stove, the water at the bottom gets heat due to conduction through the vessel’s bottom. Its density decreases and consequently it rises. Thus, the heat is carried from the bottom to the top by the actual movement of the parts of the water. If the heated material is forced to move, say by a blower or a pump, the process of heat transfer is called forced convection. If the material moves due to difference in density, it is called natural or free convection.

        Heat Radiation

        The process in which heat is transferred from one place to the other without any intervening medium is called radiation. All bodies at all temperatures and at all times radiate energy in the form of electromagnetic waves, called radiant energy. Emission rate is faster at higher temperatures. In this radiant energy, electromagnetic waves of wavelength ranging from 10-4 mm to 1 mm are called infrared radiation or heat radiation. According to prevost’s theory of exchange besides radiating heat radiation or thermal radiation all bodies also absorb part of the thermal radiation falling on them emitted by  the surrounding bodies. If a body radiates more, what it absorbs, its temperature falls and vice versa.

        BLACK BODY RADIATION

        Basic Definitions

        (i) Perfectly Black Body
        A body which absorbs all the radiations incident on it is called a perfectly black body.

        (ii) Absorptive Power of a surface (a)
        The ratio of the radiant energy absorbed by it in a given time to the total radiant energy incident on it in the same time is called the absorptive power (a) of the surface. Since it is a pure ratio it has no units and dimensions. The absorptive power of a perfectly black body is maximum and its value is unity.
        a≤1

        (iii) Spectral Absorptive Power (aλ)
        Absorptive power refers to all wavelengths (total radiant energy). However, any surface will have different values of absorptive powers for different wavelengths. A surface may be a good absorber for a wavelength λ1 and bad absorber for wavelength λ2, it means its absorptive power for wavelength λ1 is greater than the absorptive power for λ2.
        Thus, spectral absorptive power aλ is defined as the ratio of the radiant energy of a given wavelength absorbed by a given surface in a given time to the total radiant energy of that wavelength incident in the same time on the same surface. Or we can say that it is absorptive power for that particular wavelength. It is now obvious that wavelength incident in the same time on the same surface. Or we can say that it is absorptive power for that particular wavelength. It is now obvious that
        a=∫0∞aλaλ
        aλ≤1
        For perfectly black body  aλ=1

        Example 4

        100 units of energy is incident on a surface. In this 20 units are of wavelength λ1, 30 units are of wavelength λ2 and rest 50 units are other wavelengths. The total 60 units of energy is absorbed by the surface. In this 60 units 5 units are of λ1 and 25 units are of λ2. Find a,  and.

        Solution:

        Total absorptive power a=60100=0.6
        and spectral absorptive power for λ1=aλ1=520=0.25
        Spectral absorptive power for λ2=aλ1=2530=0.83
        From this example it is clear that total absorption power of the surface is only 0.6 whereas aλ1 = is 0.83 (> 0.6) i.e. the surface is good absorber of wavelength λ2.

        Prev Newton’s Law of Cooling, Cooling Curve; Wien’s Displacement Law; Thermo Flask
        Next Revision Notes Heat Transfer

        Leave A Reply Cancel reply

        Your email address will not be published. Required fields are marked *

        All Courses

        • Backend
        • Chemistry
        • Chemistry
        • Chemistry
        • Class 08
          • Maths
          • Science
        • Class 09
          • Maths
          • Science
          • Social Studies
        • Class 10
          • Maths
          • Science
          • Social Studies
        • Class 11
          • Chemistry
          • English
          • Maths
          • Physics
        • Class 12
          • Chemistry
          • English
          • Maths
          • Physics
        • CSS
        • English
        • English
        • Frontend
        • General
        • IT & Software
        • JEE Foundation (Class 9 & 10)
          • Chemistry
          • Physics
        • Maths
        • Maths
        • Maths
        • Maths
        • Maths
        • Photography
        • Physics
        • Physics
        • Physics
        • Programming Language
        • Science
        • Science
        • Science
        • Social Studies
        • Social Studies
        • Technology

        Latest Courses

        Class 8 Science

        Class 8 Science

        ₹8,000.00
        Class 8 Maths

        Class 8 Maths

        ₹8,000.00
        Class 9 Science

        Class 9 Science

        ₹10,000.00

        Contact Us

        +91-8287971571

        contact@dronstudy.com

        Company

        • About Us
        • Contact
        • Privacy Policy

        Links

        • Courses
        • Test Series

        Copyright © 2021 DronStudy Pvt. Ltd.

        Login with your site account

        Lost your password?

        Modal title

        Message modal