• Home
  • Courses
  • Online Test
  • Contact
    Have any question?
    +91-8287971571
    contact@dronstudy.com
    Login
    DronStudy
    • Home
    • Courses
    • Online Test
    • Contact

      Class 11 PHYSICS – JEE

      • Home
      • All courses
      • Class 11
      • Class 11 PHYSICS – JEE
      CoursesClass 11PhysicsClass 11 PHYSICS – JEE
      • 1.Basic Maths (1) : Vectors
        7
        • Lecture1.1
          Vector and Scalar, Representation of Vectors, Need for Co-ordinate System, Distance & Displacement 39 min
        • Lecture1.2
          Mathematics of Vectors, Triangle Law and Parallelogram Law 01 hour
        • Lecture1.3
          Addition More than Two Vectors, Subtraction of Vectors- Displacement vector 28 min
        • Lecture1.4
          Elementary Maths 14 min
        • Lecture1.5
          Unit Vectors, Special Unit Vectors, Resolution of Vectors 49 min
        • Lecture1.6
          Addition & Subtract using Unit Vectors, 3 D Vectors, Product of Vectors 54 min
        • Lecture1.7
          Chapter Notes – Basic Maths (1) : Vectors
      • 2.Basic Maths (2) : Calculus
        4
        • Lecture2.1
          Delta, Concept of Infinity, Time Instant Interval, Rate of Change, Position and Velocity 40 min
        • Lecture2.2
          Fundamental Idea of Differentiation- Constant Multiplication Rule, Sum/Difference Rule 29 min
        • Lecture2.3
          Trigonometric functions, Log function, Product Rule, Quotient Rule, Chain Rule 25 min
        • Lecture2.4
          Integration- Formulas of Integration, Use of Integration 45 min
      • 3.Unit and Measurement
        13
        • Lecture3.1
          Unit, History of Unit of Length-Metre, Properties of a Good Unit 21 min
        • Lecture3.2
          Concept of Derived Units, Fundamental Physics Quantities and Prefix of Units 38 min
        • Lecture3.3
          Unit-less Derived Quantities, Supplementary Quantities, Systems of Unit, Unit Conversion 39 min
        • Lecture3.4
          Dimensional Analysis, Dimension and Unit, Dimensionless Quantities 32 min
        • Lecture3.5
          Principle of Homogeneity 34 min
        • Lecture3.6
          Dimensionally Correct/Incorrect Equations, Use of Dimensional Analysis 41 min
        • Lecture3.7
          More Units of Length and Measurement of Length 47 min
        • Lecture3.8
          Errors and Their Reasons 36 min
        • Lecture3.9
          Combination of Errors 42 min
        • Lecture3.10
          Round Off, Significant Figures, Exponent Form of Numbers/Scientific Notation 27 min
        • Lecture3.11
          Chapter Notes – Unit and Measurement
        • Lecture3.12
          NCERT Solutions – Unit and Measurement
        • Lecture3.13
          Revision Notes – Unit and Measurement
      • 4.Motion (1) : Straight Line Motion
        10
        • Lecture4.1
          Meaning of Dimension; Position; Distance & Displacement 25 min
        • Lecture4.2
          Average Speed & Velocity; Instantaneous Speed & Velocity 31 min
        • Lecture4.3
          Photo Diagram; Acceleration- Direction of acceleration, Conceptual Examples 22 min
        • Lecture4.4
          Constant Acceleration; Equations of constant acceleration 43 min
        • Lecture4.5
          Average Velocity Examples and Concepts; Reaction Time 19 min
        • Lecture4.6
          Free Fall under Gravity 30 min
        • Lecture4.7
          Variable Acceleration; Derivation of Constant Acceleration Equations 48 min
        • Lecture4.8
          Chapter Notes – Motion (1) : Straight Line Motion
        • Lecture4.9
          NCERT Solutions – Straight Line Motion
        • Lecture4.10
          Revision Notes Straight Line Motion
      • 5.Motion (2) : Graphs
        3
        • Lecture5.1
          Tangent & Chord; Slope of Line- Chord & Tangent; Meaning of x/t graph, v/t graph, a/t graph 59 min
        • Lecture5.2
          Graph Conversion 51 min
        • Lecture5.3
          Area Under Curve 22 min
      • 6.Motion (3) : Two Dimensional Motion
        6
        • Lecture6.1
          Projectile on Level Ground 32 min
        • Lecture6.2
          Terms Related to Projectile on Level Ground 31 min
        • Lecture6.3
          Not Level to Level Projectile, Problem Solving, Dot Product 34 min
        • Lecture6.4
          Equation of Trajectory and Some Miscellaneous Questions 35 min
        • Lecture6.5
          Projectile on Inclined Plane 39 min
        • Lecture6.6
          Collision of Projectile and Avg. Acceleration in 2D Motion 16 min
      • 7.Motion (4) : Relative Motion
        7
        • Lecture7.1
          Reference Frame and Distance of Closest Approach 45 min
        • Lecture7.2
          Relative Motion in 2D 26 min
        • Lecture7.3
          Free Fall & Relative Motion 26 min
        • Lecture7.4
          Throwing Object from Moving Body 32 min
        • Lecture7.5
          Rain Problem (theory)- and Wind in Rain Problem 32 min
        • Lecture7.6
          River Based Problem 26 min
        • Lecture7.7
          Crossing River by Shortest Distance- Least Time to Cross River; Wind Problems; Relative Approach 27 min
      • 8.Newton's Laws of Motion
        8
        • Lecture8.1
          Force and Newton’s Laws 33 min
        • Lecture8.2
          Normal Reaction, Free Body Diagram(F.B.D), Normal on circular bodies, Mass and Weight 57 min
        • Lecture8.3
          Tension Force(Ideal Pulley, Clamp Force), Internal & External Force, Heavy Rope 01 hour
        • Lecture8.4
          Spring Force(Sudden Change, Series and Parallel Cutting of Spring) 01 hour
        • Lecture8.5
          Inertia and Non-Inertial Frames(Pseudo Force), Action-Reactin Pair, Monkey Problem 49 min
        • Lecture8.6
          Chapter Notes – Newton’s Laws of Motion
        • Lecture8.7
          NCERT Solutions – Laws of Motion
        • Lecture8.8
          Revision Notes Laws of Motion
      • 9.Constrain Motion
        3
        • Lecture9.1
          Force of mass-less body; Constrain Motion- Pulley Constrain 1 01 hour
        • Lecture9.2
          Pulley constrain 2, Alternate Method; Wedge Constrain- Proof 49 min
        • Lecture9.3
          Relative Constrain 01 hour
      • 10.Friction
        6
        • Lecture10.1
          Kinetic friction Theory- Theory, Angle of friction 32 min
        • Lecture10.2
          Static Friction Theory- Based on Example 2, Direction of friction Theory 01 min
        • Lecture10.3
          Some Advanced Examples 18 min
        • Lecture10.4
          Block Over Block Theory 01 hour
        • Lecture10.5
          Conveyor belt, Static and kinetic co-eff. of friction, Friction on wheels, Theoretical examples 27 min
        • Lecture10.6
          Chapter Notes – Friction
      • 11.Circular Motion
        6
        • Lecture11.1
          Ex. on Average Acc. and Angular Variables Theory and Ref. Frame 52 min
        • Lecture11.2
          Uniform Circular Motion and Centripetal Force 40 min
        • Lecture11.3
          Non-Uniform Center of Mass – Theory by Ex 2; Friction 01 hour
        • Lecture11.4
          Centrifugal Force and Banking of Roads 01 hour
        • Lecture11.5
          Radius of Curvature- Radius of Curvature; Axial Vector; Well of Death 34 min
        • Lecture11.6
          Chapter Notes – Circular Motion
      • 12.Work Energy Power
        15
        • Lecture12.1
          Work & its calculation and Work-done on curved path 31 min
        • Lecture12.2
          Work-done by Different Forces 01 hour
        • Lecture12.3
          Work Energy Theorem and W.E. th in Non-inertial frame, W.E. th and Time 23 min
        • Lecture12.4
          Work Energy Theorem for System 55 min
        • Lecture12.5
          Energy and Different Forms of Energy-and Energy of Chain; Potential Energy & Reference Frame 28 min
        • Lecture12.6
          Potential Energy Curve and Power 01 hour
        • Lecture12.7
          Normal Reaction, Vertical Circular Motion, Motion in Co-Concentric Spheres 27 min
        • Lecture12.8
          Motion on Outer Surface of Sphere, Motion on Inner Surface of Fixed Sphere 59 min
        • Lecture12.9
          Motion on Rope, Motion on Rod 32 min
        • Lecture12.10
          VCM – 1 31 min
        • Lecture12.11
          VCM – 2 01 hour
        • Lecture12.12
          VCM – 3 22 min
        • Lecture12.13
          Chapter Notes – Work Energy Power
        • Lecture12.14
          NCERT Solutions – Work Energy Power
        • Lecture12.15
          Revision Notes Work Energy Power
      • 13.Momentum
        9
        • Lecture13.1
          Introduction and Conservation of Momentum 35 min
        • Lecture13.2
          Impulsive Force – Characteristics of Impulsive Force 30 min
        • Lecture13.3
          Momentum Conservation in Presence of External Force – Two Steps Problems 41 min
        • Lecture13.4
          Questions Involving Momentum & Work Energy Theorem 27 min
        • Lecture13.5
          Collision – Head – on Collision and Special Cases of Head – on Collision 39 min
        • Lecture13.6
          Oblique Collision 24 min
        • Lecture13.7
          Collision of Ball with Flat Surface 38 min
        • Lecture13.8
          Impulse and Average Force 58 min
        • Lecture13.9
          Advanced Questions 50 min
      • 14.Center of Mass
        5
        • Lecture14.1
          Center of Mass (CM) Frame and Kinetic Energy in C – Frame 29 min
        • Lecture14.2
          Finding Center of Mass by Replacement Method and Finding CM of Plate with Hole 36 min
        • Lecture14.3
          Finding CM by Integration and CM of Some Standard Objects 57 min
        • Lecture14.4
          Motion of CM; Newton’s 2nd Law for CM; CM in Circular Motion 41 min
        • Lecture14.5
          Revision Notes Center of Mass
      • 15.Rotational Motion
        14
        • Lecture15.1
          Rigid Body – Motion of Rigid Body; Axis of Rotation 14 min
        • Lecture15.2
          Vector Product/ Cross Product; Torque 44 min
        • Lecture15.3
          Couple and Principle of Moments 48 min
        • Lecture15.4
          Pseudo Force and Toppling – Overturning of Car 01 hour
        • Lecture15.5
          Moment of Inertia 01 hour
        • Lecture15.6
          Parallel Axis Theorem; Perpendicular Axis Theorem; Quantitative Analysis; Radius of Gyra 01 hour
        • Lecture15.7
          Analogy b/w Transnational & Rotational Motion; Relation b/w Linear and Angular Velocity; Dynamics of Rotation 40 min
        • Lecture15.8
          Angular Momentum 30 min
        • Lecture15.9
          Angular Momentum of a Particle 32 min
        • Lecture15.10
          Rotational Collision 49 min
        • Lecture15.11
          Kinetic Energy, Work, Power; Potential Energy; Linear & Angular Acceleration; Hinge Force; Angular Impulse 02 hour
        • Lecture15.12
          Chapter Notes – Rotational Motion and Rolling Motion
        • Lecture15.13
          NCERT Solutions – Rotational Motion
        • Lecture15.14
          Revision Notes Rotational Motion
      • 16.Rolling Motion
        11
        • Lecture16.1
          Introduction to Rolling Motion 40 min
        • Lecture16.2
          Rolling Motion on Spool 24 min
        • Lecture16.3
          Friction 59 min
        • Lecture16.4
          Direction of Friction 01 hour
        • Lecture16.5
          Rolling on Moving Platform and Motion of Touching Spheres 44 min
        • Lecture16.6
          Rope Based Questions 55 min
        • Lecture16.7
          Work-done by Friction in Rolling Motion, Kinetic Energy in Transnational + Rotational Motion 29 min
        • Lecture16.8
          Angular Momentum in Rotation + Translation 01 hour
        • Lecture16.9
          Angular Collision 01 hour
        • Lecture16.10
          Instantaneous Axis of Rotation 50 min
        • Lecture16.11
          De-Lambart’s Theorem 50 min
      • 17.Gravitation
        8
        • Lecture17.1
          Gravitation force, Universal Law of Gravitation, Gravitational Force due to Hollow Sphere and Solid Sphere 35 min
        • Lecture17.2
          Acceleration due to Gravity and Rotation of Earth 42 min
        • Lecture17.3
          Potential Energy, Questions and Solutions 56 min
        • Lecture17.4
          Satellites, Circular Motion, Geostationary Satellites and Polar Satellites 42 min
        • Lecture17.5
          Polar Satellites, Weightlessness in Satellites, Trajectories and Kepler’s Laws 29 min
        • Lecture17.6
          Chapter Notes – Gravitation
        • Lecture17.7
          NCERT Solutions – Gravitation
        • Lecture17.8
          Revision Notes Gravitation
      • 18.Simple Harmonic Motion
        13
        • Lecture18.1
          Oscillatory Motion – Horizontal Spring Block System, Qualitative Analysis of Horizontal Spring System 33 min
        • Lecture18.2
          Quantitative Analysis of Horizontal Spring System; Frequency and Angular Frequency; Velocity and Acceleration; Mechanical Energy 47 min
        • Lecture18.3
          Relating Uniform Circular Motion and SHM and Phasor Diagram 30 min
        • Lecture18.4
          Equation of SHM and Problem Solving using Phasor Diagram 39 min
        • Lecture18.5
          Questions 40 min
        • Lecture18.6
          More Oscillating Systems – Vertical Spring Block System 41 min
        • Lecture18.7
          Angular Oscillations – Simple Pendulum 34 min
        • Lecture18.8
          Compound / Physical Pendulum, Torsional Pendulum, Equilibrium of Angular SHM; Differentiation by Chain Rule 38 min
        • Lecture18.9
          Energy Method to find Time Period 30 min
        • Lecture18.10
          Finding Amplitude of SHM 30 min
        • Lecture18.11
          Block Over Block and Elastic Rope 33 min
        • Lecture18.12
          Superposition of Horizontal SHMs and Perpendicular 30 min
        • Lecture18.13
          Damped Oscillations 28 min
      • 19.Waves (Part-1)
        11
        • Lecture19.1
          Wave, Plotting and Shifting of Curves, Meaning of y/t and y/x Graph, Wave is an Illusion!, 1D Wave on String 55 min
        • Lecture19.2
          Wave Equation, Analysis of Wave Equation and Wave Velocity 55 min
        • Lecture19.3
          Sinusoidal Wave (Harmonic Wave), Wave Equation for Sinusoidal Wave, Particle Velocity, Slope of Rope, Wave Velocity 01 hour
        • Lecture19.4
          Superposition of Waves 44 min
        • Lecture19.5
          Reflection of Waves 37 min
        • Lecture19.6
          Standing Waves 01 hour
        • Lecture19.7
          Tuning Fork, Sonometer and Equation of Standing Waves 54 min
        • Lecture19.8
          Energy in Waves 54 min
        • Lecture19.9
          Chapter Notes – Waves
        • Lecture19.10
          NCERT Solutions – Waves
        • Lecture19.11
          Revision Notes Waves
      • 20.Waves (Part-2)
        10
        • Lecture20.1
          Waves, Propagation of Sound Wave and Wave Equation 27 min
        • Lecture20.2
          Sound as a Pressure Wave 38 min
        • Lecture20.3
          Speed of Sound, Laplace Correction and Intensity of Sound Waves 59 min
        • Lecture20.4
          Spherical and Cylindrical Sound Waves 31 min
        • Lecture20.5
          Addition of Sin Functions, Interference of Sound Waves of Same Frequency, Interference of Coherent Sources 01 hour
        • Lecture20.6
          Quinke’s Apparatus 32 min
        • Lecture20.7
          Interference of Sound Waves of Slightly Different Frequencies (Beats) 39 min
        • Lecture20.8
          Reflection of Sound Waves, Standing Waves, End Correction 39 min
        • Lecture20.9
          Standing Waves in Terms of Pressure, Standing Waves on Rods, Kund’s Tube, Resonance Tube Experiment 49 min
        • Lecture20.10
          Doppler Effect, Reflection from Wall, Doppler Effect in 2 Dimension 01 hour
      • 21.Mechanical Properties of Solids
        6
        • Lecture21.1
          Rigid body,Strain, Stress,Hook’s Law 25 min
        • Lecture21.2
          Breaking Stress 26 min
        • Lecture21.3
          Shear Stress and Strain, Bulk Modulus, Elasticity and Plasticity, Stress-Strain Curve, Young’s Modulus 34 min
        • Lecture21.4
          Chapter Notes – Mechanical Properties of Solids
        • Lecture21.5
          NCERT Solutions – Mechanical Properties of Solids
        • Lecture21.6
          Revision Notes Mechanical Properties of Solids
      • 22.Thermal Expansion
        5
        • Lecture22.1
          Linear Expansion; Second’s Pendulum; Bimetallic Strip; Expansion of Hole; Thermal Stress 01 hour
        • Lecture22.2
          Areal/Superficial Expansion; Volume Expansion; Thermal Expansion of Liquid; Measurement of Temperature; Anomal 01 hour
        • Lecture22.3
          Arial/Superficial Expansion; Volume Expansion; Thermal Expansion of Liquid; Measurement of Temperature 38 min
        • Lecture22.4
          Chapter Notes – Thermal Expansion
        • Lecture22.5
          NCERT Solutions – Thermal Expansion
      • 23.Heat and Calorimetry
        2
        • Lecture23.1
          Internal Energy; Heat Energy; Thermal Equilibrium; Zeroth Law of Thermodynamics; Specific Heat Capacity; Latent Heat 48 min
        • Lecture23.2
          Mixing of Substances; Water Equivalent; Units; Calorimeter; Melting Point and Boiling Point; Sublimation 01 hour
      • 24.Heat Transfer
        6
        • Lecture24.1
          Conduction; Comparison between Charge Flow & Heat Flow 42 min
        • Lecture24.2
          Equivalent Thermal Conductivity; Heat Transfer and Calorimetry; Use of Integration; Length Variation 44 min
        • Lecture24.3
          Convection; Radiation, Black Body, Prevost Theory, Emissive Power & Emissivity, Kirchoff’s Law, Stefan – Boltzman Law 01 hour
        • Lecture24.4
          Newton’s Law of Cooling, Cooling Curve; Wien’s Displacement Law; Thermo Flask 48 min
        • Lecture24.5
          Chapter Notes – Heat Transfer
        • Lecture24.6
          Revision Notes Heat Transfer
      • 25.Kinetic Theory of Gases
        6
        • Lecture25.1
          Model of Gas,Postulates of Kinetic Theory of Gases, Ideal Gas, Mean free Path, Maxwell’s speed Distribution 37 min
        • Lecture25.2
          Volume, Pressure of Gases, Kinetic Energy, Temperature, Ideal Gas Equation 45 min
        • Lecture25.3
          Gas Laws, Internal energy of Gas, Degree of Freedom, Degree of Freedom of Mono-atomic and Diatomic Gas 56 min
        • Lecture25.4
          Chapter Notes – Kinetic Theory of Gases
        • Lecture25.5
          NCERT Solutions – Kinetic Theory of Gases
        • Lecture25.6
          Revision Notes Kinetic Theory of Gases
      • 26.Thermodynamics
        9
        • Lecture26.1
          State Equation; Thermodynamic Process; Process Equation & Graph; Work done by Gas 01 hour
        • Lecture26.2
          Heat – Work Equivalence; 1st Law of Thermodynamics; Adiabatic Process 57 min
        • Lecture26.3
          Workdone in Adiabatic Process; Specific Molar Heat Capacity 39 min
        • Lecture26.4
          Poly-tropic Process, Bulk Modulus; Free Expansion; Mixture of Gases 54 min
        • Lecture26.5
          Heat Engine, Refrigerator or Heat Pump, Energy Conservation, Kelvin-Plank Statement, Clausius Statement 01 hour
        • Lecture26.6
          Carnot Cycle, Reversible and Irreversible Process, Specific Heat Capacity of Solids and Water 01 hour
        • Lecture26.7
          Chapter Notes – Thermodynamics
        • Lecture26.8
          NCERT Solutions – Thermodynamics
        • Lecture26.9
          Revision Notes Thermodynamics
      • 27.Fluids
        14
        • Lecture27.1
          Introduction, Pressure of Liquid 47 min
        • Lecture27.2
          Manometer, Barometer 41 min
        • Lecture27.3
          Pascal Law, Hydraulic Lift 35 min
        • Lecture27.4
          Accelerated Liquid, Vertical and Horizontal Acceleration, Pressure Variation in Horizontally Accelerated Liquid 57 min
        • Lecture27.5
          Rotating Liquid, Rotating Liquid in U-Tube 28 min
        • Lecture27.6
          Archimedes’ Principle, Hollow Objects 59 min
        • Lecture27.7
          Apparent Weight, Variation of Liquid Force with Height 01 hour
        • Lecture27.8
          Multiple Liquids 34 min
        • Lecture27.9
          Center of Bouyancy 28 min
        • Lecture27.10
          Fluid Dynamics, Equation of Continuity 48 min
        • Lecture27.11
          Magnus Effect 37 min
        • Lecture27.12
          Venturimeter, Pitot Tube 27 min
        • Lecture27.13
          Questions and Solutions 31 min
        • Lecture27.14
          Chapter Notes – Fluids
      • 28.Surface Tension and Viscosity
        6
        • Lecture28.1
          Surface Tension, Surface Energy 52 min
        • Lecture28.2
          Force of Cohesion, Force of Adhesion, Angle of Contact, Radius of Meniscus, Capillary Rise 54 min
        • Lecture28.3
          Pressure Difference Across Meniscus, Variation of Surface tension with Temperature 27 min
        • Lecture28.4
          Viscous Force 35 min
        • Lecture28.5
          Terminal Velocity, Velocity Gradient, Renolds Number, Turbulent Flow, Streamline Flow 41 min
        • Lecture28.6
          Chapter Notes – Surface Tension and Viscosity

        Chapter Notes – Work Energy Power

        WORK

        Whenever a  force acting on a body produces a change in the position of the  body, work is said to be done by the force. If there is no change in the position of the body, work is not done.  Our special definition of the word work does not correspond to the colloquial usage of the term.  Thus, we may exert a large force on a wall, but if the wall remains where it is, then we have not done any work.  We may be doing hard work in physiological sense, but from the point of view of physics, we are not doing any work.  If a coolie holding a heavy box on his head is standing at a fixed location, he is not doing any work. Work is said to be done only when there is a displacement in the direction of force.
        The work W done by a constant force F when its point of application undergoes a displacement s is defined to be

        W=Fscosθ

        where θ  is the angle between F⃗  and s⃗  as indicated in figure. Only the component of F⃗  along s, that is fcosθ, contributes to the work done.  Strictly speaking, the work is done by the source or agent that applies the force. Work is a scalar quantity and its SI unit is the joule (J). From the above equation,  we see that

        1 J = 1 Nm

        Work is also defined as the dot product of force and its displacement as given by

        W=F⃗ .s⃗ 

        In terms of rectangular components, the two vectors are F⃗ =Fxi^+Fyj^+Fzk^ and

        s⃗ =Δxi^+Δyj^+Δzk^; hence, the above equation may be written as
        W=FxΔx+FyΔy+FzΔz

        The work done by a given force on a body depends only on the force, the displacement, and the angle between them.  It does not depend on the velocity or the acceleration of the body, or on the presence of other forces.

        When several forces act on a body one may calculate the work done by each force individually. The net work done on the body is the algebraic sum of individual contributions.

        Wnet=F⃗ 1.S⃗ 1+F⃗ 2.S⃗ 2+……….+F⃗ n.S⃗ n
        or Wnet = W1 + W2  + …………… + Wn

        Positive, Negative and Zero Work

        Work done by a force may be positive or negative depending on the angle θ between the force and displacement. If the angle θ is acute (θ < 90o), then the work done is positive and the component  of force is parallel to the displacement.

        If the angle θ is obtuse (θ > 90o), the component of force is antiparallel to the displacement and the work done by force is negative.

        Application 1

        When a person lifts a body from the ground to some higher position, the work done by the lifting force (i.e. the force applied by the person ) is positive since force (vector) and displacement (vector) are along the same (vertically upward) direction and hence,
        θ=0   cosθ=1
        However, the work done by the gravity (or the force by the earth on the body) is negative since force (vector) and displacement (vector) are oppositely directed and hence θ=1800   cosθ=−1.

        Application 2

        A box is moved over a horizontal path by applying force F = 60 N at an angle  = 30o to the horizontal. What is the work done during the displacement of the box over a distance of 0.5 km.

        Solution

        By definition,   W = F s cosθ
        Here  F = 60 N; s = 0.5 km = 500m;  θ = 30o
        W = (60)(500) cos30o = 26 kJ

        Work Done By Friction

        There is a misconception that the force of friction always does negative work. In reality, the work done by friction may be zero, positive or negative depending upon the situation.
        In figure (a), when a block is pulled by a force F and the block does not move, the work done by friction is zero.
        In figure (b), when a  block is pulled by a force F on a stationary surface, the work done by the kinetic friction is negative.
        In figure (c), block A is placed on the block B. When the block A is pulled with a force F, the friction force does negative work on block A and positive work on block B. The kinetic friction and displacement are oppositely directed in case of block A while in case of block B they are in the same direction.

        Work Done By Gravity

        Consider a block of mass m which slides down a smooth inclined plane of angle θ.
        Let us assume the coordinate axes as shown in the figure, to specify the components of the two vectors – although the value of work will not depend on the orientation of the axes.
        Now, the force of gravity, F⃗ g=−mgj^  and the displacement is given by

        S⃗ =Δxi^+Δyj^+Δzk^

        The work done by gravity is
        Wg=F⃗ g.s⃗ =−mgj^.(Δxi^+Δyj^+Δzk^)
        or Wg=−mgΔy       (j^.i^=0, j^.i^=1, j^.k^=0)
        since Δy = yf – yi = –h
        Wg = -mg(yf – yi) = +mgh
        If the block moves in the upward direction, then the work done by gravity is negative and is given by
        Wg = -mgh

        NOTE
        The work done by the force of gravity on a particle depends only on the initial and final vertical coordinates. It does not depend on the path taken or on the speed of the particle.
        The work done by gravity is zero for any path that returns to its initial point.

        Application 3

        A block of mass 10 kg is to be raised from the bottom to the top of incline 5m long and 3m off the ground at the top.  Assuming frictionless surface, how much work is done by a force parallel to the incline pushing the block up at constant speed. ( g =  10 m/s2)

        Solution

        Here, we must first find the force with which the block must be pushed.  We begin by drawing a F.B.D. of the block.
        Here,
        F = Applied force
        mg = weight of the block
        N = Normal reaction by the incline on the block.

        Because the motion occurs at constant speed (i.e. no acceleration), the resultant force parallel to the plane must be zero.  Thus
        F−mgsinθ=0
        or F=mgsinθ=10×1035=60N
        Then, the work done by F  is
        W = F. S  cos 00 = 60 × 5 = 300 J.

        If a person were to raise the block vertically without using the incline, the work he would do would be the vertical force mg times the vertical distance
        or          (10  10 N) × (3m)  = 300 J, the same as before.
        The only difference is that with the incline he could do the job with a smaller force i.e. 60 N but he has to push the block a greater distance i.e. 5 m up the incline than he had to raise the block directly (3m).
        This application also illustrates the point that machines (simple or complex) can not save the amount of work that has to be done to accomplish a job, they merely allow us to do the job with less effort.

        Work Done By A Variable Force

        When the magnitude and direction of a force vary in three dimensions, it can be expressed as a function of the position vector F⃗ (r), or in terms of the coordinates F⃗ (x,y,z). The work done by such a force in an infinitesimal displacement ds is
        dW=F⃗ .ds

        The work done in going from point A to point B by this variable force F⃗  as shown in the figure is
        WA→B=∫ABF⃗ .ds⃗ =∫AB(Fcosθ)ds

        In terms of rectangular components,
        F⃗ =Fxi^+Fyj^+Fzk^
        and ds⃗ =dxi^+dyj^+dzk^
        WA→B=∫xAxBFxdx+∫yAyBFydy+∫zAzBFzdz

        Work Done By Spring Force

        If x be the displacement of the free end of the spring from its equilibrium position then, the magnitude of spring force is given by
        Fx = -kx.

        The negative sign signifies that the force always opposes the extension (x > 0) or the compression (x < 0) of the spring. In other words, the force tends to restore the system to its equilibrium position.
        The work done by the spring force for a displacement from xi to xf is given by

        Ws=∫xixfFsdx=−∫xixfkxdx
        or Ws=−12k(x2f−x2i)

        Graphically, the work done by the spring force in a displacement from xi to xf is the shaded area (as shown in the figure, which is the difference in the areas of two triangles.
        Note
        (1)The work done by a spring force may be positive or negative
        (2)The work done by the spring force only depends on the initial and final positions.
        (3)The work done by the spring force is zero for any path that returns to the initial position.

         

        When already stretched or compressed spring is allowed to regain its natural length, work done by the spring force is positive.
        In general, the work done by a variable force F(x) from an initial point xi to final point xf is given by the area under the force – displacement curve as shown in the figure .
        Area (work) above the x – axis is taken as positive, and below x-axis is taken as negative.

        Application 4

        A horizontal force F very slowly lifts the bob of a simple pendulum from a vertical position to a point at which the string makes an angle qo to the vertical. The magnitude of the force is varied so that the bob is essentially in equilibrium all times. What is the work done by the force on the bob?

        Solution

        Figure is a free body diagram of the system and shows the forces acting on the bob. Since the acceleration is zero, net horizontal force and net vertical force on the bob must be zero.
        ∑Fx=F−Tsinθ=0
        ∑Fy=Tcosθ−mg=0

        Eliminating T we get
        F=mgtanθ …………(i)

        This is how the force must vary as a function of angle q  in order for the bob to be in equilibrium.
        The work done by in an infinitesimal displacement  along the circular arc is
        dW=F⃗ .ds⃗ =Fxdx
        =mgtanθdx        ……..(ii)
        From figure, we see that dydx=tanθ, thus, dy = tan dx.

        Equation (ii) becomes  dW = mg dy, therefore, the total work done from
        y = 0 to y = yo is
        w=∫0yomgdy=mgyo

        where the vertical displacement yo  is     yo = L(1 – cosθo)
        W = mgL(1 – cosθo)

        Dependence of Work on Frame of Reference

        Work as defined, depends on frame of  reference also.  When we change from one inertial reference frame to another inertial reference frame, the force does not change, while displacement may change, so the work done by a force will be different.  For example, suppose a person is pushing a box in a moving train (in the same direction as the movement of train) by applying a force F on it.  In the reference frame of the train, the work done by the force will be F. S where S is the displacement of the block with respect to the train.  But in the reference frame of the earth the work will be F. (S + S0) where S0 is the displacement of the train with respect to the earth.

        Prev VCM – 3
        Next NCERT Solutions – Work Energy Power

        Leave A Reply Cancel reply

        Your email address will not be published. Required fields are marked *

        All Courses

        • Backend
        • Chemistry
        • Chemistry
        • Chemistry
        • Class 08
          • Maths
          • Science
        • Class 09
          • Maths
          • Science
          • Social Studies
        • Class 10
          • Maths
          • Science
          • Social Studies
        • Class 11
          • Chemistry
          • English
          • Maths
          • Physics
        • Class 12
          • Chemistry
          • English
          • Maths
          • Physics
        • CSS
        • English
        • English
        • Frontend
        • General
        • IT & Software
        • JEE Foundation (Class 9 & 10)
          • Chemistry
          • Physics
        • Maths
        • Maths
        • Maths
        • Maths
        • Maths
        • Photography
        • Physics
        • Physics
        • Physics
        • Programming Language
        • Science
        • Science
        • Science
        • Social Studies
        • Social Studies
        • Technology

        Latest Courses

        Class 8 Science

        Class 8 Science

        ₹8,000.00
        Class 8 Maths

        Class 8 Maths

        ₹8,000.00
        Class 9 Science

        Class 9 Science

        ₹10,000.00

        Contact Us

        +91-8287971571

        contact@dronstudy.com

        Company

        • About Us
        • Contact
        • Privacy Policy

        Links

        • Courses
        • Test Series

        Copyright © 2021 DronStudy Pvt. Ltd.

        Login with your site account

        Lost your password?

        Modal title

        Message modal