• Home
  • Courses
  • Online Test
  • Contact
    Have any question?
    +91-8287971571
    contact@dronstudy.com
    Login
    DronStudy
    • Home
    • Courses
    • Online Test
    • Contact

      Class 11 PHYSICS – JEE

      • Home
      • All courses
      • Class 11
      • Class 11 PHYSICS – JEE
      CoursesClass 11PhysicsClass 11 PHYSICS – JEE
      • 1.Basic Maths (1) : Vectors
        7
        • Lecture1.1
          Vector and Scalar, Representation of Vectors, Need for Co-ordinate System, Distance & Displacement 39 min
        • Lecture1.2
          Mathematics of Vectors, Triangle Law and Parallelogram Law 01 hour
        • Lecture1.3
          Addition More than Two Vectors, Subtraction of Vectors- Displacement vector 28 min
        • Lecture1.4
          Elementary Maths 14 min
        • Lecture1.5
          Unit Vectors, Special Unit Vectors, Resolution of Vectors 49 min
        • Lecture1.6
          Addition & Subtract using Unit Vectors, 3 D Vectors, Product of Vectors 54 min
        • Lecture1.7
          Chapter Notes – Basic Maths (1) : Vectors
      • 2.Basic Maths (2) : Calculus
        4
        • Lecture2.1
          Delta, Concept of Infinity, Time Instant Interval, Rate of Change, Position and Velocity 40 min
        • Lecture2.2
          Fundamental Idea of Differentiation- Constant Multiplication Rule, Sum/Difference Rule 29 min
        • Lecture2.3
          Trigonometric functions, Log function, Product Rule, Quotient Rule, Chain Rule 25 min
        • Lecture2.4
          Integration- Formulas of Integration, Use of Integration 45 min
      • 3.Unit and Measurement
        13
        • Lecture3.1
          Unit, History of Unit of Length-Metre, Properties of a Good Unit 21 min
        • Lecture3.2
          Concept of Derived Units, Fundamental Physics Quantities and Prefix of Units 38 min
        • Lecture3.3
          Unit-less Derived Quantities, Supplementary Quantities, Systems of Unit, Unit Conversion 39 min
        • Lecture3.4
          Dimensional Analysis, Dimension and Unit, Dimensionless Quantities 32 min
        • Lecture3.5
          Principle of Homogeneity 34 min
        • Lecture3.6
          Dimensionally Correct/Incorrect Equations, Use of Dimensional Analysis 41 min
        • Lecture3.7
          More Units of Length and Measurement of Length 47 min
        • Lecture3.8
          Errors and Their Reasons 36 min
        • Lecture3.9
          Combination of Errors 42 min
        • Lecture3.10
          Round Off, Significant Figures, Exponent Form of Numbers/Scientific Notation 27 min
        • Lecture3.11
          Chapter Notes – Unit and Measurement
        • Lecture3.12
          NCERT Solutions – Unit and Measurement
        • Lecture3.13
          Revision Notes – Unit and Measurement
      • 4.Motion (1) : Straight Line Motion
        10
        • Lecture4.1
          Meaning of Dimension; Position; Distance & Displacement 25 min
        • Lecture4.2
          Average Speed & Velocity; Instantaneous Speed & Velocity 31 min
        • Lecture4.3
          Photo Diagram; Acceleration- Direction of acceleration, Conceptual Examples 22 min
        • Lecture4.4
          Constant Acceleration; Equations of constant acceleration 43 min
        • Lecture4.5
          Average Velocity Examples and Concepts; Reaction Time 19 min
        • Lecture4.6
          Free Fall under Gravity 30 min
        • Lecture4.7
          Variable Acceleration; Derivation of Constant Acceleration Equations 48 min
        • Lecture4.8
          Chapter Notes – Motion (1) : Straight Line Motion
        • Lecture4.9
          NCERT Solutions – Straight Line Motion
        • Lecture4.10
          Revision Notes Straight Line Motion
      • 5.Motion (2) : Graphs
        3
        • Lecture5.1
          Tangent & Chord; Slope of Line- Chord & Tangent; Meaning of x/t graph, v/t graph, a/t graph 59 min
        • Lecture5.2
          Graph Conversion 51 min
        • Lecture5.3
          Area Under Curve 22 min
      • 6.Motion (3) : Two Dimensional Motion
        6
        • Lecture6.1
          Projectile on Level Ground 32 min
        • Lecture6.2
          Terms Related to Projectile on Level Ground 31 min
        • Lecture6.3
          Not Level to Level Projectile, Problem Solving, Dot Product 34 min
        • Lecture6.4
          Equation of Trajectory and Some Miscellaneous Questions 35 min
        • Lecture6.5
          Projectile on Inclined Plane 39 min
        • Lecture6.6
          Collision of Projectile and Avg. Acceleration in 2D Motion 16 min
      • 7.Motion (4) : Relative Motion
        7
        • Lecture7.1
          Reference Frame and Distance of Closest Approach 45 min
        • Lecture7.2
          Relative Motion in 2D 26 min
        • Lecture7.3
          Free Fall & Relative Motion 26 min
        • Lecture7.4
          Throwing Object from Moving Body 32 min
        • Lecture7.5
          Rain Problem (theory)- and Wind in Rain Problem 32 min
        • Lecture7.6
          River Based Problem 26 min
        • Lecture7.7
          Crossing River by Shortest Distance- Least Time to Cross River; Wind Problems; Relative Approach 27 min
      • 8.Newton's Laws of Motion
        8
        • Lecture8.1
          Force and Newton’s Laws 33 min
        • Lecture8.2
          Normal Reaction, Free Body Diagram(F.B.D), Normal on circular bodies, Mass and Weight 57 min
        • Lecture8.3
          Tension Force(Ideal Pulley, Clamp Force), Internal & External Force, Heavy Rope 01 hour
        • Lecture8.4
          Spring Force(Sudden Change, Series and Parallel Cutting of Spring) 01 hour
        • Lecture8.5
          Inertia and Non-Inertial Frames(Pseudo Force), Action-Reactin Pair, Monkey Problem 49 min
        • Lecture8.6
          Chapter Notes – Newton’s Laws of Motion
        • Lecture8.7
          NCERT Solutions – Laws of Motion
        • Lecture8.8
          Revision Notes Laws of Motion
      • 9.Constrain Motion
        3
        • Lecture9.1
          Force of mass-less body; Constrain Motion- Pulley Constrain 1 01 hour
        • Lecture9.2
          Pulley constrain 2, Alternate Method; Wedge Constrain- Proof 49 min
        • Lecture9.3
          Relative Constrain 01 hour
      • 10.Friction
        6
        • Lecture10.1
          Kinetic friction Theory- Theory, Angle of friction 32 min
        • Lecture10.2
          Static Friction Theory- Based on Example 2, Direction of friction Theory 01 min
        • Lecture10.3
          Some Advanced Examples 18 min
        • Lecture10.4
          Block Over Block Theory 01 hour
        • Lecture10.5
          Conveyor belt, Static and kinetic co-eff. of friction, Friction on wheels, Theoretical examples 27 min
        • Lecture10.6
          Chapter Notes – Friction
      • 11.Circular Motion
        6
        • Lecture11.1
          Ex. on Average Acc. and Angular Variables Theory and Ref. Frame 52 min
        • Lecture11.2
          Uniform Circular Motion and Centripetal Force 40 min
        • Lecture11.3
          Non-Uniform Center of Mass – Theory by Ex 2; Friction 01 hour
        • Lecture11.4
          Centrifugal Force and Banking of Roads 01 hour
        • Lecture11.5
          Radius of Curvature- Radius of Curvature; Axial Vector; Well of Death 34 min
        • Lecture11.6
          Chapter Notes – Circular Motion
      • 12.Work Energy Power
        15
        • Lecture12.1
          Work & its calculation and Work-done on curved path 31 min
        • Lecture12.2
          Work-done by Different Forces 01 hour
        • Lecture12.3
          Work Energy Theorem and W.E. th in Non-inertial frame, W.E. th and Time 23 min
        • Lecture12.4
          Work Energy Theorem for System 55 min
        • Lecture12.5
          Energy and Different Forms of Energy-and Energy of Chain; Potential Energy & Reference Frame 28 min
        • Lecture12.6
          Potential Energy Curve and Power 01 hour
        • Lecture12.7
          Normal Reaction, Vertical Circular Motion, Motion in Co-Concentric Spheres 27 min
        • Lecture12.8
          Motion on Outer Surface of Sphere, Motion on Inner Surface of Fixed Sphere 59 min
        • Lecture12.9
          Motion on Rope, Motion on Rod 32 min
        • Lecture12.10
          VCM – 1 31 min
        • Lecture12.11
          VCM – 2 01 hour
        • Lecture12.12
          VCM – 3 22 min
        • Lecture12.13
          Chapter Notes – Work Energy Power
        • Lecture12.14
          NCERT Solutions – Work Energy Power
        • Lecture12.15
          Revision Notes Work Energy Power
      • 13.Momentum
        9
        • Lecture13.1
          Introduction and Conservation of Momentum 35 min
        • Lecture13.2
          Impulsive Force – Characteristics of Impulsive Force 30 min
        • Lecture13.3
          Momentum Conservation in Presence of External Force – Two Steps Problems 41 min
        • Lecture13.4
          Questions Involving Momentum & Work Energy Theorem 27 min
        • Lecture13.5
          Collision – Head – on Collision and Special Cases of Head – on Collision 39 min
        • Lecture13.6
          Oblique Collision 24 min
        • Lecture13.7
          Collision of Ball with Flat Surface 38 min
        • Lecture13.8
          Impulse and Average Force 58 min
        • Lecture13.9
          Advanced Questions 50 min
      • 14.Center of Mass
        5
        • Lecture14.1
          Center of Mass (CM) Frame and Kinetic Energy in C – Frame 29 min
        • Lecture14.2
          Finding Center of Mass by Replacement Method and Finding CM of Plate with Hole 36 min
        • Lecture14.3
          Finding CM by Integration and CM of Some Standard Objects 57 min
        • Lecture14.4
          Motion of CM; Newton’s 2nd Law for CM; CM in Circular Motion 41 min
        • Lecture14.5
          Revision Notes Center of Mass
      • 15.Rotational Motion
        14
        • Lecture15.1
          Rigid Body – Motion of Rigid Body; Axis of Rotation 14 min
        • Lecture15.2
          Vector Product/ Cross Product; Torque 44 min
        • Lecture15.3
          Couple and Principle of Moments 48 min
        • Lecture15.4
          Pseudo Force and Toppling – Overturning of Car 01 hour
        • Lecture15.5
          Moment of Inertia 01 hour
        • Lecture15.6
          Parallel Axis Theorem; Perpendicular Axis Theorem; Quantitative Analysis; Radius of Gyra 01 hour
        • Lecture15.7
          Analogy b/w Transnational & Rotational Motion; Relation b/w Linear and Angular Velocity; Dynamics of Rotation 40 min
        • Lecture15.8
          Angular Momentum 30 min
        • Lecture15.9
          Angular Momentum of a Particle 32 min
        • Lecture15.10
          Rotational Collision 49 min
        • Lecture15.11
          Kinetic Energy, Work, Power; Potential Energy; Linear & Angular Acceleration; Hinge Force; Angular Impulse 02 hour
        • Lecture15.12
          Chapter Notes – Rotational Motion and Rolling Motion
        • Lecture15.13
          NCERT Solutions – Rotational Motion
        • Lecture15.14
          Revision Notes Rotational Motion
      • 16.Rolling Motion
        11
        • Lecture16.1
          Introduction to Rolling Motion 40 min
        • Lecture16.2
          Rolling Motion on Spool 24 min
        • Lecture16.3
          Friction 59 min
        • Lecture16.4
          Direction of Friction 01 hour
        • Lecture16.5
          Rolling on Moving Platform and Motion of Touching Spheres 44 min
        • Lecture16.6
          Rope Based Questions 55 min
        • Lecture16.7
          Work-done by Friction in Rolling Motion, Kinetic Energy in Transnational + Rotational Motion 29 min
        • Lecture16.8
          Angular Momentum in Rotation + Translation 01 hour
        • Lecture16.9
          Angular Collision 01 hour
        • Lecture16.10
          Instantaneous Axis of Rotation 50 min
        • Lecture16.11
          De-Lambart’s Theorem 50 min
      • 17.Gravitation
        8
        • Lecture17.1
          Gravitation force, Universal Law of Gravitation, Gravitational Force due to Hollow Sphere and Solid Sphere 35 min
        • Lecture17.2
          Acceleration due to Gravity and Rotation of Earth 42 min
        • Lecture17.3
          Potential Energy, Questions and Solutions 56 min
        • Lecture17.4
          Satellites, Circular Motion, Geostationary Satellites and Polar Satellites 42 min
        • Lecture17.5
          Polar Satellites, Weightlessness in Satellites, Trajectories and Kepler’s Laws 29 min
        • Lecture17.6
          Chapter Notes – Gravitation
        • Lecture17.7
          NCERT Solutions – Gravitation
        • Lecture17.8
          Revision Notes Gravitation
      • 18.Simple Harmonic Motion
        13
        • Lecture18.1
          Oscillatory Motion – Horizontal Spring Block System, Qualitative Analysis of Horizontal Spring System 33 min
        • Lecture18.2
          Quantitative Analysis of Horizontal Spring System; Frequency and Angular Frequency; Velocity and Acceleration; Mechanical Energy 47 min
        • Lecture18.3
          Relating Uniform Circular Motion and SHM and Phasor Diagram 30 min
        • Lecture18.4
          Equation of SHM and Problem Solving using Phasor Diagram 39 min
        • Lecture18.5
          Questions 40 min
        • Lecture18.6
          More Oscillating Systems – Vertical Spring Block System 41 min
        • Lecture18.7
          Angular Oscillations – Simple Pendulum 34 min
        • Lecture18.8
          Compound / Physical Pendulum, Torsional Pendulum, Equilibrium of Angular SHM; Differentiation by Chain Rule 38 min
        • Lecture18.9
          Energy Method to find Time Period 30 min
        • Lecture18.10
          Finding Amplitude of SHM 30 min
        • Lecture18.11
          Block Over Block and Elastic Rope 33 min
        • Lecture18.12
          Superposition of Horizontal SHMs and Perpendicular 30 min
        • Lecture18.13
          Damped Oscillations 28 min
      • 19.Waves (Part-1)
        11
        • Lecture19.1
          Wave, Plotting and Shifting of Curves, Meaning of y/t and y/x Graph, Wave is an Illusion!, 1D Wave on String 55 min
        • Lecture19.2
          Wave Equation, Analysis of Wave Equation and Wave Velocity 55 min
        • Lecture19.3
          Sinusoidal Wave (Harmonic Wave), Wave Equation for Sinusoidal Wave, Particle Velocity, Slope of Rope, Wave Velocity 01 hour
        • Lecture19.4
          Superposition of Waves 44 min
        • Lecture19.5
          Reflection of Waves 37 min
        • Lecture19.6
          Standing Waves 01 hour
        • Lecture19.7
          Tuning Fork, Sonometer and Equation of Standing Waves 54 min
        • Lecture19.8
          Energy in Waves 54 min
        • Lecture19.9
          Chapter Notes – Waves
        • Lecture19.10
          NCERT Solutions – Waves
        • Lecture19.11
          Revision Notes Waves
      • 20.Waves (Part-2)
        10
        • Lecture20.1
          Waves, Propagation of Sound Wave and Wave Equation 27 min
        • Lecture20.2
          Sound as a Pressure Wave 38 min
        • Lecture20.3
          Speed of Sound, Laplace Correction and Intensity of Sound Waves 59 min
        • Lecture20.4
          Spherical and Cylindrical Sound Waves 31 min
        • Lecture20.5
          Addition of Sin Functions, Interference of Sound Waves of Same Frequency, Interference of Coherent Sources 01 hour
        • Lecture20.6
          Quinke’s Apparatus 32 min
        • Lecture20.7
          Interference of Sound Waves of Slightly Different Frequencies (Beats) 39 min
        • Lecture20.8
          Reflection of Sound Waves, Standing Waves, End Correction 39 min
        • Lecture20.9
          Standing Waves in Terms of Pressure, Standing Waves on Rods, Kund’s Tube, Resonance Tube Experiment 49 min
        • Lecture20.10
          Doppler Effect, Reflection from Wall, Doppler Effect in 2 Dimension 01 hour
      • 21.Mechanical Properties of Solids
        6
        • Lecture21.1
          Rigid body,Strain, Stress,Hook’s Law 25 min
        • Lecture21.2
          Breaking Stress 26 min
        • Lecture21.3
          Shear Stress and Strain, Bulk Modulus, Elasticity and Plasticity, Stress-Strain Curve, Young’s Modulus 34 min
        • Lecture21.4
          Chapter Notes – Mechanical Properties of Solids
        • Lecture21.5
          NCERT Solutions – Mechanical Properties of Solids
        • Lecture21.6
          Revision Notes Mechanical Properties of Solids
      • 22.Thermal Expansion
        5
        • Lecture22.1
          Linear Expansion; Second’s Pendulum; Bimetallic Strip; Expansion of Hole; Thermal Stress 01 hour
        • Lecture22.2
          Areal/Superficial Expansion; Volume Expansion; Thermal Expansion of Liquid; Measurement of Temperature; Anomal 01 hour
        • Lecture22.3
          Arial/Superficial Expansion; Volume Expansion; Thermal Expansion of Liquid; Measurement of Temperature 38 min
        • Lecture22.4
          Chapter Notes – Thermal Expansion
        • Lecture22.5
          NCERT Solutions – Thermal Expansion
      • 23.Heat and Calorimetry
        2
        • Lecture23.1
          Internal Energy; Heat Energy; Thermal Equilibrium; Zeroth Law of Thermodynamics; Specific Heat Capacity; Latent Heat 48 min
        • Lecture23.2
          Mixing of Substances; Water Equivalent; Units; Calorimeter; Melting Point and Boiling Point; Sublimation 01 hour
      • 24.Heat Transfer
        6
        • Lecture24.1
          Conduction; Comparison between Charge Flow & Heat Flow 42 min
        • Lecture24.2
          Equivalent Thermal Conductivity; Heat Transfer and Calorimetry; Use of Integration; Length Variation 44 min
        • Lecture24.3
          Convection; Radiation, Black Body, Prevost Theory, Emissive Power & Emissivity, Kirchoff’s Law, Stefan – Boltzman Law 01 hour
        • Lecture24.4
          Newton’s Law of Cooling, Cooling Curve; Wien’s Displacement Law; Thermo Flask 48 min
        • Lecture24.5
          Chapter Notes – Heat Transfer
        • Lecture24.6
          Revision Notes Heat Transfer
      • 25.Kinetic Theory of Gases
        6
        • Lecture25.1
          Model of Gas,Postulates of Kinetic Theory of Gases, Ideal Gas, Mean free Path, Maxwell’s speed Distribution 37 min
        • Lecture25.2
          Volume, Pressure of Gases, Kinetic Energy, Temperature, Ideal Gas Equation 45 min
        • Lecture25.3
          Gas Laws, Internal energy of Gas, Degree of Freedom, Degree of Freedom of Mono-atomic and Diatomic Gas 56 min
        • Lecture25.4
          Chapter Notes – Kinetic Theory of Gases
        • Lecture25.5
          NCERT Solutions – Kinetic Theory of Gases
        • Lecture25.6
          Revision Notes Kinetic Theory of Gases
      • 26.Thermodynamics
        9
        • Lecture26.1
          State Equation; Thermodynamic Process; Process Equation & Graph; Work done by Gas 01 hour
        • Lecture26.2
          Heat – Work Equivalence; 1st Law of Thermodynamics; Adiabatic Process 57 min
        • Lecture26.3
          Workdone in Adiabatic Process; Specific Molar Heat Capacity 39 min
        • Lecture26.4
          Poly-tropic Process, Bulk Modulus; Free Expansion; Mixture of Gases 54 min
        • Lecture26.5
          Heat Engine, Refrigerator or Heat Pump, Energy Conservation, Kelvin-Plank Statement, Clausius Statement 01 hour
        • Lecture26.6
          Carnot Cycle, Reversible and Irreversible Process, Specific Heat Capacity of Solids and Water 01 hour
        • Lecture26.7
          Chapter Notes – Thermodynamics
        • Lecture26.8
          NCERT Solutions – Thermodynamics
        • Lecture26.9
          Revision Notes Thermodynamics
      • 27.Fluids
        14
        • Lecture27.1
          Introduction, Pressure of Liquid 47 min
        • Lecture27.2
          Manometer, Barometer 41 min
        • Lecture27.3
          Pascal Law, Hydraulic Lift 35 min
        • Lecture27.4
          Accelerated Liquid, Vertical and Horizontal Acceleration, Pressure Variation in Horizontally Accelerated Liquid 57 min
        • Lecture27.5
          Rotating Liquid, Rotating Liquid in U-Tube 28 min
        • Lecture27.6
          Archimedes’ Principle, Hollow Objects 59 min
        • Lecture27.7
          Apparent Weight, Variation of Liquid Force with Height 01 hour
        • Lecture27.8
          Multiple Liquids 34 min
        • Lecture27.9
          Center of Bouyancy 28 min
        • Lecture27.10
          Fluid Dynamics, Equation of Continuity 48 min
        • Lecture27.11
          Magnus Effect 37 min
        • Lecture27.12
          Venturimeter, Pitot Tube 27 min
        • Lecture27.13
          Questions and Solutions 31 min
        • Lecture27.14
          Chapter Notes – Fluids
      • 28.Surface Tension and Viscosity
        6
        • Lecture28.1
          Surface Tension, Surface Energy 52 min
        • Lecture28.2
          Force of Cohesion, Force of Adhesion, Angle of Contact, Radius of Meniscus, Capillary Rise 54 min
        • Lecture28.3
          Pressure Difference Across Meniscus, Variation of Surface tension with Temperature 27 min
        • Lecture28.4
          Viscous Force 35 min
        • Lecture28.5
          Terminal Velocity, Velocity Gradient, Renolds Number, Turbulent Flow, Streamline Flow 41 min
        • Lecture28.6
          Chapter Notes – Surface Tension and Viscosity

        Chapter Notes – Basic Maths (1) : Vectors

        What is a  Function?

        A key idea in mathematical analysis and in Physics is the idea of dependence. One quantity depends on another if the variation of one of them is accompanied by a variation of other. Mathematicians speak of the independent variable and the dependent variable. In Physics, it is better to think in terms of cause and effect or interdependent quantities.
        The dependence of one quantity on another can be quantitatively expressed in three different ways:
        (i) Tabular presentation
        (ii) Graphical presentation
        (iii) Mathematical equations
        Let us consider the distance covered by an automobile, moving at constant speed, as a function of time. Data for a particular example of such motion may be presented numerically, as in the following Table. The exact mathematical relationship between the time and the distance in this example is not immediately obvious while examining the table. This is one of the disadvantages of tabular presentation. Although the numerical values can be precisely specified, they do not at once convey the clear picture of how the variables are related. A graph does this job much better.

        Table: Time and Distance for a moving Automobile

        Elapsed Time(min) Distance (km)
        0 0
        2 1.5
        4 3.0
        6 4.5
        8 6.0
        10 7.5

        Let us plot the same data on a graph as shown in the figure. The independent variable – time is plotted horizontally; and the dependent variable – distance is plotted vertically. Each pair of numbers in the table gives a single point on the graph. It is immediately obvious that the points may be joined by a single straight line.
        The equation that fits the above tabular and graphical data is s=0.75t.
        Where s represents the distance in kilometre and t represents the time in minutes.
        This equation, lacking dimensional consistency, is better replaced by s = vot.
        where vo is a constant whose value in this example is vo = 0.75 km/min
        The equation provides the most concise expression of a functional relationship.

        Slope of a Line

        The slope of a line in a graph is defined as the tangent of the angle (measured in anticlockwise direction) that the line makes with the positive direction of the horizontal axis. This angle is designated by q in figure. That is
        tan q = s/t = vo            is the slope of the line given in the above figure.
        Note that the quantity tanq is a dimensional quantity in this case, length divide by time. We always measure slopes as a vertical increment divided by a horizontal increment on a graph, each increment being measured in the appropriate unit for the quantity in question. With this understanding, the slope of a line is independent of the scales choosen to prepare the graph.

        Derivative  of a Function

        Slope has a simple physical meaning. It is the rate of change of the quantity being plotted vertically with respect to the quantity being plotted horizontally. Mathematically, slope is derivative of the function.
        If s = vot, the derivative of s with respect to t is dsdt=vo

        Mathematical Definition

        Let y be a function of x. If to a small increment Dx of x there corresponds a small increment Dy of y. Then limΔx→0ΔyΔx is called the derivative of y with respect of x and is written as dydx or ddx[f(x)] or f′(x)
        If y=f(x).
        then, y+Δy=f(x+Δx)
        Δy=f(x+Δx)−f(x)
        thus, f′(x)=limΔx→0f(x+Δx)−f(x)Δx
        The derivative of f(x) at x = a is denoted by f ‘(a).

        Geometrical Interpretation of Derivative

        Let us consider the graph of y = f(x) as shown in figure. Let P and Q be the two points on it. Then
        PR=LM=Δx
        QR=Δy
        tanα=ΔyΔx=f(x+Δx)−f(x)Δx
        is the slope of PQ as Q→P along the curve Δx→0, α→θ and PQ becomes tangents TPT’ at P.
        tanθ=limα→θtanα=limΔx→0f(x+Δx)−f(x)Δx
        = dydx at P.
        tanθ is the slope of tangent at P.

        Rules of Differentiation

        The process of finding the derivative of a function is called differentiating the function. Differentiation obeys several simple rules that are worth committing to memory.
        (i)  The derivative of a constant times a function is the constant times the derivative of the function.
        ddx[af(x)]=adfdx

        Application 1

        Find the derivative of  y = 3x2

        Solution:

        dydx=3ddx(x2)=3(2x)=6x
        (ii) The derivative of the sum of the functions is the sum of their derivatives.
        ddx[f(x)+g(x)]=dfdx+dgdx

        Application 2

        Find the derivative of   y = x3 + 3x2

        Solution:

        dydx=ddx(x3)=ddx3x2=3x2+6x

        (iii) Derivative of product of two functions is given as
        ddx[fg]=fdgdx+gdfdx

        (iv) Derivative of a quotient is given as
        ddx[fg]=gdfdx−fdgdxg2

        (v) The chain rule
        Suppose f is a function of u, which in turn is a function of x. The derivative dfdx can be written as the product of two derivatives
        dfdx=dfdududx

        Application 3

        Find the derivative of y = sin x2

        Solution:

        Let us assume u=x2, then y= sin u. then dydu= cos u and dudx=2x
        dydx=dydududx = (cos u)(2x) = 2x Cos u
        dydx= 2x cos x2

        Applications of Derivative

        (i) Increasing and Decreasing Function
        A function f (x) is said to be increasing if f (x) increases as x increases, and decreasing if f (x) decreases as x increases.
        In other words, if x1<x2⇒f(x1)<f(x2) then f(x) is increasing
        if x1<x2⇒f(x1)>f(x2) then f(x) is decreasing.

        As shown in the figure, when f(x) is increasing, the tangent to the curve at any point, say P, makes an acute angle with positive x-axis. The slope of the tangent is positive.
        Thus, tanθ=dydx>0

        As shown in the figure, when f(x) is decreasing, the tangent to the curve at any point, say P, makes an obtuse angle with positive x–axis. The slope of the tangent is negative.
        Thus, tanθ=dydx<0

        (ii) Maximum and Minimum Values of a Function
        As shown in the figure, at the point of maximum and minimum of a function the slope of the tangent at the point is zero.
        Thus, tanθ=dydx=0

        Note
        (i) f(x) is maximum at a point x = a, if
        (a)  f’(a) = 0 and
        (b) f’(x) changes in sign from positive to negative when x passes through the point x = a. In other words, the second derivative of the function at x = a is negative. i.e f′′(a)<0
        (ii) f (x) is minimum at a point x = a, if
        (a) f’(a) = 0 and
        (b) f’(x) changes in sign from negative to positive when x passes through the point x = a. In other words, the second derivative of the function at x = a is positive. i.e. f′′(a)>0

        Integration

        Integration is the inverse operation of differentiation. Integration of f(x) consists in finding the function I(x) whose derivative is equal to f(x).
        Mathematically, f(x)=dIdx or I(x)=∫f(x)dx
        In the above expression, f(x) is called the integrand; ∫ is the symbol of integration and dx indicates the variable of integration. The symbols on the right side of equation together represent a single entity. It does not mean that f(x) is multiplied by dx. The function I(x) is also known sometimes as the antiderivative of f(x).

        Application 4

        If the derivative function is f(x) = 0. Find the integral function I(x).

        Solution:

        Since a function whose derivative is zero is a constant, therefore I(x) = c, where c is any fixed number.

        The integrals of some common functions are listed in the Table : 2 of integrals. Note that moving backward in this table (right column to left column) is equivalent to differentiating. In the same way, moving from right column to left column in the Table : 1 of derivatives is equivalent to integrating.

        General Significance of Integration

        As we have learnt the graphical interpretation of differentiation as finding the slope of a curve. Integration also has a simple graphical meaning. It is related to finding the area under a curve.

        If a function f (x) is expressed graphically in the form f (x) vs x, the area under the curve between the limits a and b means the area bounded by the curve of f (x), the x-axis and two lines x = a and x = b.

        The area under the graph of a positive function is defined to be positive. The area under (actually above) the graph of a negative function is defined to be negative. As shown in the figure(c) , positive and negative area add algebraically and may cancel.

        The total area between definite limits of x is called a definite integral. The notation for the definite integral is
        Area= D=∫abf(x)dx


        Note
        A definite integral between fixed limits is a fixed quantity, not a function. It has a specific numerical value and generally has a unit, which need not be a unit of area. Just as the idea of slope is generalized from its purely geometric meaning and acquires a unit determined by the quotient of the vertically plotted quantity and the horizontally plotted quantity, the idea of areas is also generalized and acquires a unit determined by the product of the vertically and horizontally plotted quantities

        Prev Addition & Subtract using Unit Vectors, 3 D Vectors, Product of Vectors
        Next Delta, Concept of Infinity, Time Instant Interval, Rate of Change, Position and Velocity

        Leave A Reply Cancel reply

        Your email address will not be published. Required fields are marked *

        All Courses

        • Backend
        • Chemistry
        • Chemistry
        • Chemistry
        • Class 08
          • Maths
          • Science
        • Class 09
          • Maths
          • Science
          • Social Studies
        • Class 10
          • Maths
          • Science
          • Social Studies
        • Class 11
          • Chemistry
          • English
          • Maths
          • Physics
        • Class 12
          • Chemistry
          • English
          • Maths
          • Physics
        • CSS
        • English
        • English
        • Frontend
        • General
        • IT & Software
        • JEE Foundation (Class 9 & 10)
          • Chemistry
          • Physics
        • Maths
        • Maths
        • Maths
        • Maths
        • Maths
        • Photography
        • Physics
        • Physics
        • Physics
        • Programming Language
        • Science
        • Science
        • Science
        • Social Studies
        • Social Studies
        • Technology

        Latest Courses

        Class 8 Science

        Class 8 Science

        ₹8,000.00
        Class 8 Maths

        Class 8 Maths

        ₹8,000.00
        Class 9 Science

        Class 9 Science

        ₹10,000.00

        Contact Us

        +91-8287971571

        contact@dronstudy.com

        Company

        • About Us
        • Contact
        • Privacy Policy

        Links

        • Courses
        • Test Series

        Copyright © 2021 DronStudy Pvt. Ltd.

        Login with your site account

        Lost your password?

        Modal title

        Message modal