• Home
  • Courses
  • Online Test
  • Contact
    Have any question?
    +91-8287971571
    contact@dronstudy.com
    Login
    DronStudy
    • Home
    • Courses
    • Online Test
    • Contact

      Class 11 MATHS – JEE

      • Home
      • All courses
      • Class 11
      • Class 11 MATHS – JEE
      CoursesClass 11MathsClass 11 MATHS – JEE
      • 1.Sets, Relation and Functions
        12
        • Lecture1.1
          Introduction to sets, Description of sets 32 min
        • Lecture1.2
          Types of Sets, Subsets 39 min
        • Lecture1.3
          Intervals, Venn Diagrams, Operations on Sets 37 min
        • Lecture1.4
          Laws of Algebra of Sets 26 min
        • Lecture1.5
          Introduction to sets and its types, operations of sets, Venn Diagrams 28 min
        • Lecture1.6
          Functions and its Types 38 min
        • Lecture1.7
          Functions Types 17 min
        • Lecture1.8
          Cartesian Product of Sets, Relation, Domain and Range 40 min
        • Lecture1.9
          Sum Related to Relations 04 min
        • Lecture1.10
          Sums Related to Relations, Domain and Range 22 min
        • Lecture1.11
          Chapter Notes – Sets, Relation and Functions
        • Lecture1.12
          NCERT Solutions – Sets, Relation and Functions
      • 2.Trigonometric Functions
        28
        • Lecture2.1
          Introduction, Some Identities and Some Sums 16 min
        • Lecture2.2
          Some Sums Related to Trigonometry Identities, trigonometry Functions Table and Its Quadrants 35 min
        • Lecture2.3
          NCERT Sums Ex.3.3 (Q.1-5)Based on Trigometry table and Their Quadrants, Trigonometry Identities of Sum and Diff. of two Angles 21 min
        • Lecture2.4
          NCERT Sums Ex-3.2 Based on Trigonometry Function of Lower & Higher Angles 22 min
        • Lecture2.5
          NCERT Sums Ex-3.3 (Q.6 – 10) Based on Radian Angles 11 min
        • Lecture2.6
          NCERT Sums Ex-3.3 (Q.11-13)Based on Trigonometry Identities 16 min
        • Lecture2.7
          NCERT Sums Ex-3.3 (Q. 14)Based on Trigonometry Identities 14 min
        • Lecture2.8
          NCERT Sums Ex-3.3 (Q.16) Based on Trigonometry Identities 05 min
        • Lecture2.9
          NCERT Sums Ex-3.3 (Q.17 -21) Based on Trigonometry Identities 12 min
        • Lecture2.10
          NCERT Sums Ex-3.4 (Q. 1 – 9), Trigonometry Equation 25 min
        • Lecture2.11
          Sums Based on Trigonometry Equations 24 min
        • Lecture2.12
          Sums Based on Trigonometry Equations 11 min
        • Lecture2.13
          Sums Based on Trigonometry Equations 11 min
        • Lecture2.14
          Sums Based on Trigonometry Equations 17 min
        • Lecture2.15
          Equations Having two Variable Angle which satisfy both equations 10 min
        • Lecture2.16
          Trigonometrical Identities-Some important relations and Its related Sums 16 min
        • Lecture2.17
          Sums Related to Trigonometrical Identities 18 min
        • Lecture2.18
          Properties of Triangles and Solution of Triangles-Sine formula, Napier Analogy and Sums 17 min
        • Lecture2.19
          Relation Between Degree and Radian, Quadrant and NCERT Sum Ex.3.1, 3.2 41 min
        • Lecture2.20
          Trigonometric Functions Table 09 min
        • Lecture2.21
          Some Trigonometric Identities and its related Sums 42 min
        • Lecture2.22
          Sums Related to Trigonometrical Identities 19 min
        • Lecture2.23
          Sums Related to Trigonometrical Identities 41 min
        • Lecture2.24
          Sums Related to Trigonometrical Identities 23 min
        • Lecture2.25
          Trigonometry Equations 44 min
        • Lecture2.26
          Sum Based on Trigonometry Equations 07 min
        • Lecture2.27
          Sums Based on Trigonometry function of Lower Angle 03 min
        • Lecture2.28
          Chapter Notes – Trigonometric Functions
      • 3.Mathematical Induction
        5
        • Lecture3.1
          Introduction to PMI 25 min
        • Lecture3.2
          NCERT Solution of EX- 4.1 14 min
        • Lecture3.3
          NCERT Solution of EX- 4.1 22 min
        • Lecture3.4
          NCERT Solution of EX- 4.1 13 min
        • Lecture3.5
          Chapter Notes – Mathematical Induction
      • 4.Complex Numbers and Quadratic Equation
        15
        • Lecture4.1
          Introduction, Nature of Roots, Numbers, Introduction of i 27 min
        • Lecture4.2
          Sum Related to Relations, Real and Imaginary part of C-N, Conjugate of a C-N 33 min
        • Lecture4.3
          Absolute value or Modulus of a C-N and Related Sums 29 min
        • Lecture4.4
          Sums Related To Multiplicative Inverse 29 min
        • Lecture4.5
          Polar Form of a C-N 32 min
        • Lecture4.6
          Sums Related To Polar Form 32 min
        • Lecture4.7
          Square Roots of C-N and its Related Sums 28 min
        • Lecture4.8
          De Moivris Theorem and its related Sums 31 min
        • Lecture4.9
          Introduction, Nature of Roots, Numbers, Introduction of i and its Sums, Real and Imaginary Part of C-N 35 min
        • Lecture4.10
          Sums Related to Real and Imaginary Part of C-N and Operations on C-N 13 min
        • Lecture4.11
          Sums Related To Multiplicative Inverse 07 min
        • Lecture4.12
          Sums Related To Multiplicative Inverse and Modulus and Argument of a C-N 33 min
        • Lecture4.13
          Polar form of a C-N, Nature of Roots 38 min
        • Lecture4.14
          Sums Based on Roots of Quadratic Equations, Sums of Polar form 10 min
        • Lecture4.15
          Chapter Notes – Complex Numbers and Quadratic Equation
      • 5.Linear Inequalities
        4
        • Lecture5.1
          Introduction, Solve some Linear Inequalities and its Graph 42 min
        • Lecture5.2
          Solve some Linear Inequalities and its Graph 12 min
        • Lecture5.3
          Solve some Linear Inequalities and its Graph and Introduction-Permutations and Combinations 35 min
        • Lecture5.4
          Chapter Notes – Linear Inequalities
      • 6.Permutations and Combinations
        5
        • Lecture6.1
          NCERT Sums Ex-7.3, Equation 41 min
        • Lecture6.2
          NCERT Sums Ex-7.3, Equation 02 min
        • Lecture6.3
          Combination and NCERT Sums Ex-7.4 40 min
        • Lecture6.4
          NCERT Sums Ex-7.1 & 7.2 22 min
        • Lecture6.5
          Chapter Notes – Permutations and Combinations
      • 7.Binomial Theorem
        19
        • Lecture7.1
          Introduction to Binomial Theorem 21 min
        • Lecture7.2
          Binomial General Expansion and Their Derivations and its Related Sums 22 min
        • Lecture7.3
          Pascal’s Triangle Theorem, Addition of Two Expansion, NCERT Sums Ex-8.1 26 min
        • Lecture7.4
          Sums of Miscellaneous Exercise and Ex-8.1, Finding the Any Term from nth Term 42 min
        • Lecture7.5
          NCERT Sums Ex-8.1 14 min
        • Lecture7.6
          NCERT Sums Ex-8.1 04 min
        • Lecture7.7
          NCERT Sums Ex-8.2, Middle Term 21 min
        • Lecture7.8
          NCERT Sums Ex-8.2, Middle Term Related Sums 08 min
        • Lecture7.9
          To Find the Coefficient of X^r in the Expansion of (X+A)^n, NCERT Sums Ex-8.2 and Miscellaneous Ex. 40 min
        • Lecture7.10
          NCERT Sums Ex-8.2 10 min
        • Lecture7.11
          To Find the Sum of the Coefficients in the Expansion of (1+x)^n and its Related Sums 27 min
        • Lecture7.12
          Sums Related to Binomials Coefficients 24 min
        • Lecture7.13
          Binomial Theorem for any Index and its Related Sums 27 min
        • Lecture7.14
          Introduction to Binomial Theorem, General Term in the Expansion of (x+a)^n. 39 min
        • Lecture7.15
          NCERT Sums Ex-8.1 & 8.2, Pascals’ Triangle, pth Term from End 24 min
        • Lecture7.16
          Sums related to Finding the Coefficient, NCERT Sums Ex-8.2, Middle Term 40 min
        • Lecture7.17
          Sums Related to Middle Term 17 min
        • Lecture7.18
          Sums Related to Coefficient of the Any Term 31 min
        • Lecture7.19
          Chapter Notes – Binomial Theorem
      • 8.Sequences and Series
        14
        • Lecture8.1
          Introduction, A.P., nth Term and Sum of nth Term, P Arithmetic Mean B/w a and b, Sum Based on Fibonacci Sequence 27 min
        • Lecture8.2
          NCERT Sums Ex-9.2 37 min
        • Lecture8.3
          NCERT Sums Ex-9.2 18 min
        • Lecture8.4
          NCERT Sums Ex-9.2, Geometric Progression -Introduction, nth term, NCERT Sums Ex-9.3 39 min
        • Lecture8.5
          NCERT Sums Ex-9.3 16 min
        • Lecture8.6
          Sum of n term of G.P., NCERT Sums Ex-9.3 40 min
        • Lecture8.7
          NCERT Sums Ex-9.3 08 min
        • Lecture8.8
          NCERT Sums Ex-9.3, Insert P Geometrical Mean B/w a and b 36 min
        • Lecture8.9
          NCERT Sum Ex-9.3 17 min
        • Lecture8.10
          NCERT Sum Ex-9.3 09 min
        • Lecture8.11
          Some Special Series, NCERT Sum Ex-9.4 36 min
        • Lecture8.12
          NCERT Sum Ex-9.4 02 min
        • Lecture8.13
          NCERT Sum Ex-9.4 18 min
        • Lecture8.14
          Chapter Notes – Sequences and Series
      • 9.Properties of Triangles
        2
        • Lecture9.1
          Sine 7 Cosine Rule, Projection Formulae, Napier’s Analogy, Incircle, Some Sums 41 min
        • Lecture9.2
          Angle of Elevations and Depression. and Its Related Sums 13 min
      • 10.Straight Lines
        30
        • Lecture10.1
          Introduction, Equation of Line, Slope or Gradient of a line 24 min
        • Lecture10.2
          Sums Related to Finding the Slope, Angle Between two Lines 22 min
        • Lecture10.3
          Cases for Angle B/w two Lines, Different forms of Line Equation 23 min
        • Lecture10.4
          Sums Related Finding the Equation of Line 27 min
        • Lecture10.5
          Sums based on Previous Concepts of Straight line 32 min
        • Lecture10.6
          Parametric Form of a Straight Line 16 min
        • Lecture10.7
          Sums Related to Parametric Form of a Straight Line 16 min
        • Lecture10.8
          Sums Based on Concurrent of lines, Angle b/w Two Lines 45 min
        • Lecture10.9
          Different condition for Angle b/w two lines 04 min
        • Lecture10.10
          Sums Based on Angle b/w Two Lines 36 min
        • Lecture10.11
          Equation of Straight line Passes Through a Point and Make an Angle with Another Line 09 min
        • Lecture10.12
          Sums Based on Equation of Straight line Passes Through a Point and Make an Angle with Another Line 15 min
        • Lecture10.13
          Sums Based on Equation of Straight line Passes Through a Point and Make an Angle with Another Line 17 min
        • Lecture10.14
          Finding the Distance of a point from the line 34 min
        • Lecture10.15
          Sum Based on Finding the Distance of a point from the line and B/w Two Parallel Lines 33 min
        • Lecture10.16
          Sums Based on Find the Equation of Bisector of Angle Between two intersecting Lines 44 min
        • Lecture10.17
          Sums Based on Find the Equation of Bisector of Angle Between two intersecting Lines 02 min
        • Lecture10.18
          Introduction, Distance B/w Two Points, Slope, Equation of Line 32 min
        • Lecture10.19
          NCERT Sums Ex-10.1 43 min
        • Lecture10.20
          NCERT Sums Ex-10.1 29 min
        • Lecture10.21
          NCERT Sums Ex-10.1 & 10.2 43 min
        • Lecture10.22
          NCERT Sums Ex-10.2 30 min
        • Lecture10.23
          NCERT Sums Ex-10.2 41 min
        • Lecture10.24
          NCERT Sums Ex-10.2 & 10.3 21 min
        • Lecture10.25
          NCERT Sums Ex- 10.3 (Reduce the Equation into intercept Form, Normal form) 42 min
        • Lecture10.26
          NCERT Sums Ex-10.3 21 min
        • Lecture10.27
          NCERT Sums Ex-10.3 (Equation of Parallel line, Perpendicular Line of given line, Sums Based of Angle B/w Two Lines) 42 min
        • Lecture10.28
          NCERT Sums Ex-10.3 09 min
        • Lecture10.29
          NCERT Sums Ex-10.3 26 min
        • Lecture10.30
          Chapter Notes – Straight Lines
      • 11.Conic Sections
        21
        • Lecture11.1
          Introduction, General Equation of second Degree, Parabola, Sums based on Finding Equation of Parabola 41 min
        • Lecture11.2
          Sums Based on Equation of Parabola, Four Forms of Parabola-Form (i) 30 min
        • Lecture11.3
          Sums Based on Four Forms of Parabola-Form (i) 32 min
        • Lecture11.4
          Four Forms of Parabola-Form (ii), (iii) (iv) 13 min
        • Lecture11.5
          Sums Based on Four forms of Parabola 18 min
        • Lecture11.6
          Position of a Point with Respect to Parabola and its Sums 43 min
        • Lecture11.7
          Circles-Introduction, Different Cases for Circle Equations, NCERT Sums Ex-11.1 16 min
        • Lecture11.8
          NCERT Sums Ex-11.1 40 min
        • Lecture11.9
          Circle Important Point Revise, Intersection of Axes, NCERT Sums Ex-11.1 11 min
        • Lecture11.10
          NCERT Sums Ex-11.1 44 min
        • Lecture11.11
          Parabola- Introduction, General Equation , Sums, Some Important Concepts for Parabola 12 min
        • Lecture11.12
          Different Form of Parabola, NCERT Sum Ex-11.2 13 min
        • Lecture11.13
          NCERT Sum Ex-11.2 34 min
        • Lecture11.14
          Ellipse-Introduction, General Equation, NCERT Sums Ex-11.3 36 min
        • Lecture11.15
          NCERT Sums Ex-11.3 02 min
        • Lecture11.16
          NCERT Sums Ex-11.3 23 min
        • Lecture11.17
          Hyperbola-Introduction, NCERT Sums Ex-11.4 12 min
        • Lecture11.18
          NCERT Sums Ex-11.4 25 min
        • Lecture11.19
          Chapter Notes – Conic Sections Circles
        • Lecture11.20
          Chapter Notes – Conic Sections Ellipse
        • Lecture11.21
          Chapter Notes – Conic Sections Parabola
      • 12.Coordinate Geometry
        8
        • Lecture12.1
          Introduction to Rectangular Cartesian Coordinate Geometry (2D), Distance b/w two points 23 min
        • Lecture12.2
          Cartesian Coordinate of points 32 min
        • Lecture12.3
          Questions rel to cartesian coordinate of points 25 min
        • Lecture12.4
          Section Formula – Case 1, Case 2 24 min
        • Lecture12.5
          Problem Solving 26 min
        • Lecture12.6
          Centeroid, Incenter, Circumcenter of a triangle 30 min
        • Lecture12.7
          Locus Problems 17 min
        • Lecture12.8
          Problem Solving 21 min
      • 13.Three Dimensional Geometry
        3
        • Lecture13.1
          Introduction to 3D 18 min
        • Lecture13.2
          Numerical problems 14 min
        • Lecture13.3
          Chapter Notes – Three Dimensional Geometry
      • 14.Limits And Derivatives
        12
        • Lecture14.1
          Introduction to limits 42 min
        • Lecture14.2
          EX-13.1 16 min
        • Lecture14.3
          Questions based on algebra of limits 41 min
        • Lecture14.4
          Limits of a polynomial 12 min
        • Lecture14.5
          rational function 37 min
        • Lecture14.6
          trigo function 21 min
        • Lecture14.7
          Introduction to Derivatives 37 min
        • Lecture14.8
          Ex-13.2 22 min
        • Lecture14.9
          Algebra of derivatives 38 min
        • Lecture14.10
          Derivative of polynomial 13 min
        • Lecture14.11
          trigo function 11 min
        • Lecture14.12
          Chapter Notes – Limits And Derivatives
      • 15.Mathematical Reasoning
        3
        • Lecture15.1
          What is statement ? Special word and phrases, negation of statement , Compound statement , and & or in compound statement , truth table Solving the problems of Ex- 14.1 , 14.2 25 min
        • Lecture15.2
          Solving Ex-14.3, Ex-14.4, Implications, Validating statements, Ex-14.5, Direct method 24 min
        • Lecture15.3
          Chapter Notes – Mathematical Reasoning
      • 16.Statistics
        5
        • Lecture16.1
          Mean, Median, Mode, Range, Mean Deviation Solution of Ex-15.1 27 min
        • Lecture16.2
          Mean Deviation about Mean & Median, Ex-15.2, Mean and Variance, Standard deviation 35 min
        • Lecture16.3
          Ex-15.2 , Variance and Standard deviation 09 min
        • Lecture16.4
          Ex-15.3, Analysis of frequency distribution, comparison of two frequency distribution with same mean 23 min
        • Lecture16.5
          Chapter Notes – Statistics
      • 17.Probability
        3
        • Lecture17.1
          Outcomes & sample space, Ex. 16.3 19 min
        • Lecture17.2
          Ex.16.3, Probability of an event, Algebra of event 38 min
        • Lecture17.3
          Chapter Notes – Probability
      • 18.Binary Number
        2
        • Lecture18.1
          Binary numbers, Conversion of Binary to Decimal and Decimal to binary 45 min
        • Lecture18.2
          Addition, Subtraction, Multiplication, Division 02 min

        Chapter Notes – Conic Sections Ellipse

        Ellipse is the locus of a point in a plane that moves in such a way that the ratio of the distance from a fixed point (focus) in the same plane to its distance from a fixed straight line (directrix) is always constant, which is always less than unity.

        Major and Minor Axes

        The line segment through the foci of the ellipse with its end points on the ellipse, is called its major axis.

        The line segment through the centre and perpendicular to the major axis with its end points on the ellipse, is called its minor axis.

        Horizontal Ellipse i.e., x2 / a2 + y2 / b2 = 1, 0 < b < a

        If the coefficient of x2 has the larger denominator, then its major axis lies along the x-axis, then it is said to be horizontal ellipse.

        1. Vertices A( a, 0), Al (- a, 0)
        2. Centre (0, 0)
        3. Major axis, AAl = 2a; Minor axis, BBl = 2b
        4. Foci are S(ae, 0) and Sl(-ae, 0)
        5. Directrices are l : x = a / e, l’ ; x = – a / e
        6. Latusrectum, LLl = L’ Ll‘ = 2b2 / a
        7. Eccentricity, e = √1 – b2 / a2 < 1
        8. Focal distances are SP and SlP i.e., a – ex and a + ex. Also, SP + SlP = 2a = major axis.
        9. Distance between foci = 2ae
        10. Distance between directrices = 2a / e

        Vertical Ellipse i.e., x2 / a2 + y2 / b2 = 1, 0 < a < b

        If the coefficient of x2 has the smaller denominator, then its major axis lies along the y-axis, then it is said to be vertical ellipse.

        1. Vertices B(O, b), Bl(0,- b)
        2. Centre O(0,0)
        3. Major axis BBl = 2b; Minor axis AAl = 2a
        4. Foci are S(0, ae) and Sl(0, – ae)
        5. Directrices are l : y = b / e ; l’ : y = – b / e
        6. Latusrectum LLl = L’Ll‘ = 2a2 / b
        7. Eccentricity e = √1 – a2 / b2 < 1
        8. Focal distances are SP and SlP. i.e., b – ex and b + ex axis.

        Also, SP + SlP = 2b = major axis.

        1. Distance between foci = 2be
        2. Distance between directrices = 2b / e

         

        Ordinate and Double Ordinate

        Let P be any point on the ellipse and PN be perpendicular to the major axis AA’, such that PN produced meets the ellipse at P’. Then, PN is called the ordinate of P and PNP’ is the double ordinate of P .

        Special Form of Ellipse

        If centre of the ellipse is (h, k) and the direction of the axes are parallel to the coordinate axes, then its equation is (x – h)2 / a2 + (y – k)2 / b2 = 1

        Position of a Point with Respect to an Ellipse

        The point (x1, y1) lies outside, on or inside the ellipse x2 / a2 + y2 / b2 = 1 according as x2 1 / a2 + y2 1 / b2 – 1 > 0, = or < 0.

        Auxiliary Circle

        the ellipse x2 / a2 + y2 / b2 = 1, becomes the ellipse x2 + y2 = a2, if b = a. This is called auxiliary circle of the ellipse. i. e. , the circle described on the major axis of an ellipse as diameter is called auxiliary circle.

        Director Circle

        The locus of the point of intersection of perpendicular tangents to an ellipse is a director circle. If equation of an ellipse is x2 / a2 + y2 / b2 = 1, then equation of director circle is x2 + y2 = a2 + b2.

        Eccentric Angle of a Point

        Let P be any point on the ellipse x2 / a2 + y2 / b2 = 1. Draw PM perpendicular a b from P on the major axis of the ellipse and produce MP to the auxiliary circle in Q. Join CQ. The ∠ ACQ = φ is called the eccentric angle of the point P on the ellipse.

        Parametric Equation

        The equation x = a cos φ, y = b sin φ, taken together are called the parametric equations of the ellipse x2 / a2 + y2 / b2 = 1 , where φ is any parameter.

         

        Equation of Chord

        Let P(a cos θ, b sin θ) and Q(a cos φ, b sin φ) be any two points of the ellipse x2 / a2 + y2 / b2 = 1.

        1. The equation of the chord joining these points will be

        (y – b sin θ) = b sin φ – b sin θ / a cos φ – a sin θ (x – a cos θ) or x / a cos ( θ + φ / 2) + y / b sin ( θ + φ / 2) = cos ( θ – φ / 2)

        1. The equation of the chord of contact of tangents drawn from an point (x1, y1) to the ellipse x2 / a2 + y2 / b2 = 1 is xx1 / a2 + yy1 / b2 = 1.
        2. The equation of the chord of the ellipse x2 / a2 + y2 / b2 = 1 bisected at the point (x1, y1) is given by

        xx1 / a2 + yy1 / b2 – 1 = x21 / a2 + y21 / b2 – 1 or T = S1

        Equation of Tangent

        1. Point Form The equation of the tangent to the ellipse x2 / a2 + y2 / b2 = 1 at the point (x1, y1) is xx1 / a2 + yy1 / b2 = 1.
        2. Parametric Form The equation of the tangent to the ellipse at the point (a cos θ, b sin θ) is x / a cos θ + y / b sin θ = 1.
        3. Slope Form The equation of the tangent of slope m to the ellipse x2 / a2 + y2 / b2 = 1 are y

        = mx ± √a2m2 + b2 and the coordinates of the point of contact are

        1. Point of Intersection of Two Tangents The equation of the tangents to the ellipse at points P(a cosθ1, b sinθ1) and Q (a cos θ2, b sinθ2) are

        x / a cos θ1 + y / b sin θ1 = 1 and x / a cos θ2 + y / b sin θ2 = 1 and these two intersect at the point

        Equation of Normal

        1. Point Form The equation of the normal at (x1, y1) to the ellipse x2 / a2 + y2 / b2 = 1 is a2x / x1 + b2y / y1 = a2 – b2
        2. Parametric Form The equation of the normal to the ellipse x2 / a2 + y2 / b2 = 1 at (a cos θ, b sin θ) is

        ax sec θ – by cosec θ = a2 – b2

        1. Slope Form The equation of the normal of slope m to the ellipse x2 / a2 + y2 / b2 = 1 are given by y = mx – m (a2 – b2) / √a2 + b2m2

        and the coordinates of the point of contact are

        1. Point of Intersection of Two Normals Point of intersection of the normal at points (a cos θ1, b sin θ1) and (a cos θ2, b sin θ2) are given by

        1. If the line y = mx + c is a normal to the ellipse x2 / a2 + y2 / b2 = 1, then c2 = m2(a2 – b2)2 / a2 + b2m2

         

        Conormal Points

        The points on the ellipse, the normals at which the ellipse passes through a given point are called conormal points.

        Here, P, Q, R and S are the conormal points.

        1. The sum of the eccentric angles of the conormal points on the ellipse, x2 / a2 + y2 / b2 = 1 is an odd multiple of π.
        2. If θ1, θ2, θ3 and θ4 are eccentric angles of four points on the ellipse, the normals at which are concurrent, then
        3. Σ cos (θ1 + θ2) = 0
        4. Σ sin (θ1 + θ2) = 0
        5. If θ1, θ2 and θ3 are the eccentric angles of three points on the ellipse x2 / a2 + y2 / b2 = 1, such that

        sin (θ1 + θ2) + sin (θ2 + θ3) + sin (θ3 + θ1) = 0, then the normal at these points are concurrent.

        1. If the normal at four points P(x1, y1) , Q(x2, y2), R(x3, y3) and S(x4, y4) on the ellipse x2 / a2 + y2 / b2 = 1, are concurrent, then

        (x1 + x2 + x3 + x4) (1 / x1 + 1 / x2 + 1 / x3 + 1 / x4) = 4

        Diameter and Conjugate Diameter

        The locus of the mid-point of a system of parallel chords of an ellipse is called a diameter, whose equation of diameter is

        y = – (b2 / a2m) x

        Two diameters of an ellipse are said to be conjugate diameters, if each bisects the chords parallel to the other.

        Properties of Conjugate Diameters

        1. The eccentric angles of the ends of a pair of conjugate diameters of an ellipse differ by a right angle.
        2. The sum of the squares of any two conjugate semi-diameters of an ellipse is constant and equal to the sum of the squares of the semi-axis of the ellipse i. e., CP2 + CD2 = a2 + b2.
        3. If CP, CQ are two conjugate semi-diameters of an ellipse x2 / a2 + y2 / b2 = 1 and S, S1 be two foci of an ellipse, then

        SP * S1P = CQ2

        1. The tangent at the ends of a pair of conjugate diameters of an ellipse form a parallelogram.
        2. The area of the parallelogram formed by the tangents at the ends of conjugate diameters of an ellipse is constant and is equal to the product of the axis.

         

        Important Points

        1. The point P(x1 y1) lies outside, on or inside the ellipse x2 / a2 + y2 / b2 = 1 according as x2 /

        1

        a2 + y2 / b2 – 1 > 0, or < 0.

        1

        1. The line y = mx + c touches the ellipse x2 / a2 + y2 / b2 = 1, if c2 = a2m2 + b2
        2. The combined equation of the pair of tangents drawn from a point (x1 y1) to the ellipse x2 / a2 + y2 / b2 = 1 is

        (x2 / a2 + y2 / b2 – 1) (x21 / a2 + y21 / b2 – 1) = (xx1 / a2 + yy1 / b2 – 1)2 i.e, SS1 = T2

        1. The tangent and normal at any point of an ellipse bisect the external and internal angles between the focal radii to the point.
        2. If SM and S’ M’ are perpendiculars from the foci upon the tangent at any point of the ellipse, then SM x S’ M’ = b2 and M, M’ lie on the auxiliary circle.
        3. If the tangent at any point P on the ellipse x2 / a2 + y2 / b2 = 1 meets the major axis in T and minor axis in T’, then CN * CT = a2 ,CN’ * Ct’ = p2, where N and N’ are the foot of the perpendiculars from P on the respective axis.
        4. The common chords of an ellipse and a circle are equally inclined to the axes of the ellipse.
        5. The four normals can be drawn from a point on an ellipse.
        6. Polar of the point (x1 y1) with respect to the ellipse x2 / a2 + y2 / b2 = 1 is xx1 / a2 + yy1 / b2 = 1.

        Here, point (x1 y1) is the pole of xx1 / a2 + yy1 / b2 = 1.

        1. The pole of the line lx + my + n = 0 with respect to ellipse x2 / a2 + y2 / b2 = 1 is p(-a2l / n, -b2m / n).
        2. Two tangents can be drawn from a point P to an ellipse. These tangents are real and distinct or coincident or imaginary according as the given point lies outside, on or inside the ellipse.
        3. Tangents at the extremities of latusrectum of an ellipse intersect on the corresponding direction.
        4. Locus of mid-point of focal chords of an ellipse x2 / a2 + y2 / b2 = 1 is x2 / a2 + y2 / b2 = ex / a2.
        5. Point of intersection of the tangents at two points on the ellipse x2 / a2 + y2 / b2 = 1, whose eccentric angles differ by a right angles lies on the ellipse x2 / a2 + y2 / b2 = 2.
        6. Locus of mid – point of normal chords of an ellipse x2 / a2 + y2 / b2 = 1 is (x2 / a2 + y2 / b2)2 (a6 / x2 + b6 / y2) = (a2 – b2)2.
        7. Eccentric angles of the extremities of latusrectum of an ellipse x2 / a2 + y2 / b2 = 1 are tan-1 ( ± b / ae).
        8. The straight lines y = m1x and y =m2x are conjugate diameters of an ellipse x2 / a2 + y2 / b2 = 1, if m1m2 = – b2 / a2.
        9. The normal at point P on an ellipse with foci S, S1 is the internal bisector of ∠ SPS1.
        Prev Chapter Notes – Conic Sections Circles
        Next Chapter Notes – Conic Sections Parabola

        Leave A Reply Cancel reply

        Your email address will not be published. Required fields are marked *

        All Courses

        • Backend
        • Chemistry
        • Chemistry
        • Chemistry
        • Class 08
          • Maths
          • Science
        • Class 09
          • Maths
          • Science
          • Social Studies
        • Class 10
          • Maths
          • Science
          • Social Studies
        • Class 11
          • Chemistry
          • English
          • Maths
          • Physics
        • Class 12
          • Chemistry
          • English
          • Maths
          • Physics
        • CSS
        • English
        • English
        • Frontend
        • General
        • IT & Software
        • JEE Foundation (Class 9 & 10)
          • Chemistry
          • Physics
        • Maths
        • Maths
        • Maths
        • Maths
        • Maths
        • Photography
        • Physics
        • Physics
        • Physics
        • Programming Language
        • Science
        • Science
        • Science
        • Social Studies
        • Social Studies
        • Technology

        Latest Courses

        Class 8 Science

        Class 8 Science

        ₹8,000.00
        Class 8 Maths

        Class 8 Maths

        ₹8,000.00
        Class 9 Science

        Class 9 Science

        ₹10,000.00

        Contact Us

        +91-8287971571

        contact@dronstudy.com

        Company

        • About Us
        • Contact
        • Privacy Policy

        Links

        • Courses
        • Test Series

        Copyright © 2021 DronStudy Pvt. Ltd.

        Login with your site account

        Lost your password?

        Modal title

        Message modal