• Home
  • Courses
  • Online Test
  • Contact
    Have any question?
    +91-8287971571
    contact@dronstudy.com
    Login
    DronStudy
    • Home
    • Courses
    • Online Test
    • Contact

      Class 11 CHEMISTRY – JEE

      • Home
      • All courses
      • Chemistry
      • Class 11 CHEMISTRY – JEE
      CoursesClass 11ChemistryClass 11 CHEMISTRY – JEE
      • 1. Stoichiometry 1
        13
        • Lecture1.1
          Introduction & POAC 30 min
        • Lecture1.2
          Mole Stoichiometric relationship 29 min
        • Lecture1.3
          Successive reaction & Limiting reagent 25 min
        • Lecture1.4
          Gas Stoichiometry 29 min
        • Lecture1.5
          Important Types of Reactions 25 min
        • Lecture1.6
          Avogadro’s No.1 30 min
        • Lecture1.7
          Mole & Number 28 min
        • Lecture1.8
          Atomic, Molecular Wt 26 min
        • Lecture1.9
          Ionic wt, Avg. At. Wt. 15 min
        • Lecture1.10
          Molar wt. 27 min
        • Lecture1.11
          Molar Volume & Gas Analysis 30 min
        • Lecture1.12
          Gas Analysis 17 min
        • Lecture1.13
          Empirical Formula Determination 26 min
      • 2. Stoichiometry 2
        18
        • Lecture2.1
          Acid Base definition 23 min
        • Lecture2.2
          Acidity & Basicity 32 min
        • Lecture2.3
          Acidic Strength 30 min
        • Lecture2.4
          Acidic Strength 23 min
        • Lecture2.5
          Conjugate Acid-Base pair, Basic Strength 48 min
        • Lecture2.6
          Oxidation & Reduction 50 min
        • Lecture2.7
          Calculation of Oxidation Number 46 min
        • Lecture2.8
          O.A. & R.A., Balancing by Oxidation Number Method 01 hour
        • Lecture2.9
          Balancing by Ion Electron Method. 35 min
        • Lecture2.10
          Eq. Wt. 1 – n factor & Eq. Wt. Concept 47 min
        • Lecture2.11
          Eq. Wt. 2 – Eq. Concept 35 min
        • Lecture2.12
          Volumetric Analysis 43 min
        • Lecture2.13
          Volumetric analysis 44 min
        • Lecture2.14
          Titration – Acid Base Titration 49 min
        • Lecture2.15
          Titration – Acid Base Titration, Indicator 56 min
        • Lecture2.16
          Titration – Redox Titration-8 58 min
        • Lecture2.17
          Titration – Redox Titration, volume Strength of H2O2 50 min
        • Lecture2.18
          Titration – Redox Titration, Iodometry, Oleum, Bleaching Powder 49 min
      • 3. Thermodynamics & Thermochemistry
        19
        • Lecture3.1
          Zeroth Law 55 min
        • Lecture3.2
          1st law – System, Properties, State 40 min
        • Lecture3.3
          1st Law, Process, Internal energy, Work 43 min
        • Lecture3.4
          Work done in Irreversible process, Isobaric Process 49 min
        • Lecture3.5
          Isochoric Process & problems TD 42 min
        • Lecture3.6
          Isothermal irreversible Process, Problems on TD 46 min
        • Lecture3.7
          Adiabatic Process 49 min
        • Lecture3.8
          Problems on TD 44 min
        • Lecture3.9
          Thermochemistry & Enthalpy 38 min
        • Lecture3.10
          Hess’s Law, Kirchhoff’s Law 43 min
        • Lecture3.11
          Enthalpy of Formation, combustion 39 min
        • Lecture3.12
          Enthalpy of Hydrogenation, Hydration, dissolution, lattice energy 40 min
        • Lecture3.13
          Enthapy of Neutralisation, atomisation, Bond Energy 47 min
        • Lecture3.14
          Resonance energy & problems 45 min
        • Lecture3.15
          2nd Law, Entropy-positional 40 min
        • Lecture3.16
          TD Entropy, 3rd Law, Entropy change in a reaction 45 min
        • Lecture3.17
          Gibb’s free energy 43 min
        • Lecture3.18
          Efficiency, engine, pump & Carnot engine 39 min
        • Lecture3.19
          Chapter Notes – Thermodynamics & Thermochemistry
      • 4. Atomic Structure
        22
        • Lecture4.1
          Introduction, Cathode rays & Anode rays 41 min
        • Lecture4.2
          J.J. Thomson Model, Millikan Oil Drop Experiment 38 min
        • Lecture4.3
          Rutherford Experiment 51 min
        • Lecture4.4
          Quantum Mechanics, BlackBody Radiation Experiment 41 min
        • Lecture4.5
          Wave 44 min
        • Lecture4.6
          Photoelectric Effect 46 min
        • Lecture4.7
          Problems on Photoelectric Effect 35 min
        • Lecture4.8
          Atomic Structure 44 min
        • Lecture4.9
          Bohr Theory 47 min
        • Lecture4.10
          H – Spectrum 49 min
        • Lecture4.11
          Problems on Bohr’s Theory 40 min
        • Lecture4.12
          Adv. Problems on Bohr Theory & Sommerfeld model 51 min
        • Lecture4.13
          Quantum Mechanical Model for Atomic Structure 47 min
        • Lecture4.14
          Schrodinger wave equation 54 min
        • Lecture4.15
          No. of Orbitals & Quantum no 45 min
        • Lecture4.16
          Orbital Curve, RPD curve, Definition of Node 46 min
        • Lecture4.17
          Calculation of Node, Orbital Picture 43 min
        • Lecture4.18
          Radial Probability curve, MPD, Avg. distance, Screening effect, Zeff 38 min
        • Lecture4.19
          Multielectron system, Electronic configuration 56 min
        • Lecture4.20
          Stability of Elec. Configuration 36 min
        • Lecture4.21
          Chapter Notes – Atomic Structure
        • Lecture4.22
          NCERT Solutions – Atomic Structure
      • 5. Chemical equilibrium
        9
        • Lecture5.1
          Introduction, Eqb constant & Eqb Position 51 min
        • Lecture5.2
          Types of Eqb Constant, Heterogeneous Eqb, Reaction Quotient 45 min
        • Lecture5.3
          Range of Eqb Constant 43 min
        • Lecture5.4
          Problems on Chemical Eqb 41 min
        • Lecture5.5
          Problems on Chemical Eqb 42 min
        • Lecture5.6
          Le-chatelier Principle 42 min
        • Lecture5.7
          Le-Chatelier Principle 35 min
        • Lecture5.8
          Eqb & 2nd Law of TD 26 min
        • Lecture5.9
          NCERT Solutions – equilibrium
      • 6. Ionic Equilibrium
        17
        • Lecture6.1
          Electrolyte, Dissociation of H2O, Nature of Solution 46 min
        • Lecture6.2
          PH scale, Log & Antilog 40 min
        • Lecture6.3
          PH of Strong Acid, Base Solution 51 min
        • Lecture6.4
          PH of Weak Acid, Base solution 41 min
        • Lecture6.5
          PH of mixture of Acids, Bases 46 min
        • Lecture6.6
          PH of Polybasic acids 40 min
        • Lecture6.7
          PH of Salt Solution 1 43 min
        • Lecture6.8
          PH of salt solution 2 52 min
        • Lecture6.9
          Common ion effect, Buffer solution 49 min
        • Lecture6.10
          Buffer Capacity 45 min
        • Lecture6.11
          Titration & PH Curve 1 40 min
        • Lecture6.12
          Titration & PH curve 2 46 min
        • Lecture6.13
          Acid Base indicator 35 min
        • Lecture6.14
          Solubility Equilibrium 47 min
        • Lecture6.15
          Precipitation of Solid, Qualitative analysis of cation 44 min
        • Lecture6.16
          Complex ion equilibrium 23 min
        • Lecture6.17
          Chapter Notes – Equilibrium
      • 7. Introduction & Development of Org. Chemistry
        3
        • Lecture7.1
          Introduction & Development Of Organic Chemistry 44 min
        • Lecture7.2
          Introduction & Syllabus 36 min
        • Lecture7.3
          NCERT Solutions – Org. Chemistry
      • 8. Nomenclature of Org. Compounds
        16
        • Lecture8.1
          Alkane 59 min
        • Lecture8.2
          Alkane 31 min
        • Lecture8.3
          Alkyl Group & Types Of Hydrogen 01 hour
        • Lecture8.4
          Alkene 54 min
        • Lecture8.5
          Alkenyl 32 min
        • Lecture8.6
          Alkyne & Alkenyl 47 min
        • Lecture8.7
          Cycloalkane 43 min
        • Lecture8.8
          Cycloalkene 35 min
        • Lecture8.9
          Bicycloalkane & Spirane 35 min
        • Lecture8.10
          Acid & Aldehyde 45 min
        • Lecture8.11
          Ester & Acid Halides 28 min
        • Lecture8.12
          Amide & Nitrile 28 min
        • Lecture8.13
          Alcohol & Sulphonic Acid 37 min
        • Lecture8.14
          Isonitrile, Amine, Nitroalkane, Halo Compounds 39 min
        • Lecture8.15
          Ketone, Anhydride & Ether 34 min
        • Lecture8.16
          Polyfunctional Group Compounds 41 min
      • 9. GOC 1- Hybridisation, Resonance, Aromaticity
        16
        • Lecture9.1
          Concept Of Hybridisation 42 min
        • Lecture9.2
          Sp3, Sp2 Hybridisation 44 min
        • Lecture9.3
          Sp Hybridisation, Relative Study Of Sp3, Sp2, Sp Orbitals 46 min
        • Lecture9.4
          Effect Of Hybridisation On Bond Length, Planar Nature 59 min
        • Lecture9.5
          Concept Of Resonance 39 min
        • Lecture9.6
          Doing Resonance 18 min
        • Lecture9.7
          Resonance Hybrid, Cannonical St. , Resonance Energy 44 min
        • Lecture9.8
          Condition Of Resonance 40 min
        • Lecture9.9
          Writing Cannonical St. 39 min
        • Lecture9.10
          Relative Stability Of Cannonical St. 37 min
        • Lecture9.11
          Resonance Energy 45 min
        • Lecture9.12
          Effect Of Resonance On Bond Length, Enthalpy Of Hydrogenation 43 min
        • Lecture9.13
          Introduction To Aromaticity 43 min
        • Lecture9.14
          Introduction To Aromaticity 39 min
        • Lecture9.15
          Unsaturation Factor 31 min
        • Lecture9.16
          Chapter Notes – GOC General Organic chemistry
      • 10. GOC 2 - Substituent effect
        5
        • Lecture10.1
          Substituent Effect, Hyperconjugation 48 min
        • Lecture10.2
          Substituent Effect, Hyperconjugation 43 min
        • Lecture10.3
          Substituent Effect, Mesomeric Effect 47 min
        • Lecture10.4
          Substituent Effect, Inductive Effect 46 min
        • Lecture10.5
          Substituent Effect, Electromeric Effect, Staric Effect, Relative M & I Effect 41 min
      • 11. GOC 2 - Reactive Intermediate
        6
        • Lecture11.1
          Reactive Intermediate, Carbocation 45 min
        • Lecture11.2
          Reactive Intermediate, Carbocation, Carbonium Ion Rearrangement 42 min
        • Lecture11.3
          Reactive Intermediate, Carbonium Ion Rearrangement 41 min
        • Lecture11.4
          Reactive Intermediate, Carbanion 36 min
        • Lecture11.5
          Reactive Intermediate, Free Radical 47 min
        • Lecture11.6
          Reactive Intermediate, Carbene & Nitrene 42 min
      • 12. GOC 2 - Acid, base, Electrophile, Nucleophile
        3
        • Lecture12.1
          Acid Base, Electrophile Nucleophile 50 min
        • Lecture12.2
          Acid Base, Electrophile Nucleophile 47 min
        • Lecture12.3
          Hard Acid Base, Electrophilic Nucleophilic Strength 40 min
      • 13. Isomerism
        20
        • Lecture13.1
          Structural Isomers 39 min
        • Lecture13.2
          Tautomerism 37 min
        • Lecture13.3
          Stability Of Tautomers 43 min
        • Lecture13.4
          Factors Affecting Stability, Catalysis In Tautomerism 39 min
        • Lecture13.5
          Geometrical Isomerism 41 min
        • Lecture13.6
          E-z Nomenclature, Properties Of G.i. 43 min
        • Lecture13.7
          No. Of G.i., Interconversion Of G.i. 48 min
        • Lecture13.8
          Optical Isomerism & Its Conditions 50 min
        • Lecture13.9
          Different Types Of Projections, R-s Configuration 57 min
        • Lecture13.10
          Relationship Between Optical Isomers 45 min
        • Lecture13.11
          Dissymmetry In A Molecule 44 min
        • Lecture13.12
          Enantiomers, Mesomers, Diastereomers 39 min
        • Lecture13.13
          Special Case Of Optical Isomerism 47 min
        • Lecture13.14
          No. Of Optical Isomers, Stereoisomers 45 min
        • Lecture13.15
          D,l Configuration, Retention & Inversion 36 min
        • Lecture13.16
          Measurement Of Optical Activity 45 min
        • Lecture13.17
          No. Of Isomers 35 min
        • Lecture13.18
          Resolution Of Optical Isomers, Syn, Anti Addition, Elimination. 28 min
        • Lecture13.19
          Conformational Isomers 51 min
        • Lecture13.20
          Conformers Of Propane, Butane, Cyclohexane & Problems 44 min
      • 14. Reaction Mechanism
        21
        • Lecture14.1
          Introduction, Types Of Organic Reactions 35 min
        • Lecture14.2
          Nucleophilic Substitution Reaction 40 min
        • Lecture14.3
          Sn1 & Sn2 Reaction, Sni Pathway 53 min
        • Lecture14.4
          Reactivity In Sn1 & Sn2 Path 42 min
        • Lecture14.5
          Reactivity In Sn1 & Sn2 Path 36 min
        • Lecture14.6
          Reactivity In Sn1 & Sn2 Path 30 min
        • Lecture14.7
          Reactivity In Sn1 & Sn2 Path 41 min
        • Lecture14.8
          Elimination Reaction 53 min
        • Lecture14.9
          E1 & E2 Reaction, Isotopic Effect 46 min
        • Lecture14.10
          Orientation In Elimination Reaction 45 min
        • Lecture14.11
          Problems On Elimination Reaction 48 min
        • Lecture14.12
          Elimination Vs Substitution 34 min
        • Lecture14.13
          Addition Reaction 51 min
        • Lecture14.14
          Problems On Addition Reaction 46 min
        • Lecture14.15
          Electrophilic Aromatic Substitution Reaction 49 min
        • Lecture14.16
          Orientation In Electrophilic Aromatic Substitution 53 min
        • Lecture14.17
          Reactivity In Electrophilic Aromatic Substitution Reaction 30 min
        • Lecture14.18
          Examples Of Electrophilic Aromatic Substitution Reaction 37 min
        • Lecture14.19
          Examples Of Electrophilic Aromatic Substitution Reaction 37 min
        • Lecture14.20
          Nucleophilic Aromatic Substitution 44 min
        • Lecture14.21
          Benzyne Pathway 27 min
      • 15. Alkane
        7
        • Lecture15.1
          Alkane Preparation 49 min
        • Lecture15.2
          Alkane Preparation & Selective Hydrogenation 31 min
        • Lecture15.3
          Alkane Preparation 40 min
        • Lecture15.4
          Alkane Preparation 38 min
        • Lecture15.5
          Alkane Preparation 32 min
        • Lecture15.6
          Alkane Properties 55 min
        • Lecture15.7
          Alkane Properties & Problems 39 min
      • 16. Alkene
        7
        • Lecture16.1
          Alkene Preparation 45 min
        • Lecture16.2
          Alkene Preparation 36 min
        • Lecture16.3
          Alkene Properties 53 min
        • Lecture16.4
          Alkene Properties 40 min
        • Lecture16.5
          Alkene Properties 42 min
        • Lecture16.6
          Alkene Properties & Ozonolysis 41 min
        • Lecture16.7
          Alkene Properties, Oxidation, Substitution 38 min
      • 17. Alkyl Halides
        4
        • Lecture17.1
          Preparation 38 min
        • Lecture17.2
          Properties 49 min
        • Lecture17.3
          Haloform Reaction 28 min
        • Lecture17.4
          Grignard Reagent 29 min
      • 18. Chemical Bonding
        32
        • Lecture18.1
          Introduction, definition, Concept & Type of Bonding 53 min
        • Lecture18.2
          Ionic Bonding, covalent bonding 50 min
        • Lecture18.3
          Ionic Character in Covalent Bonding, Electronegativity 34 min
        • Lecture18.4
          Dipole Moment 42 min
        • Lecture18.5
          Fajan’s Rule 34 min
        • Lecture18.6
          Model for Covalent Compound, V.B.T. – Lewis St. Model 56 min
        • Lecture18.7
          Lewis Structure Model 45 min
        • Lecture18.8
          Formal Charge 46 min
        • Lecture18.9
          Formal Charge Rule 44 min
        • Lecture18.10
          Resonance 43 min
        • Lecture18.11
          Merits & Demerits of Lewis St. Model 44 min
        • Lecture18.12
          Drawing Lewis St. 30 min
        • Lecture18.13
          VSEPR 1 49 min
        • Lecture18.14
          VSEPR 2 51 min
        • Lecture18.15
          VSEPR 3 51 min
        • Lecture18.16
          VSEPR 4 33 min
        • Lecture18.17
          BackBonding 38 min
        • Lecture18.18
          Bond Angle determination 47 min
        • Lecture18.19
          Concept of Hybridisation 44 min
        • Lecture18.20
          Sp3, Sp2 Hybridisation 44 min
        • Lecture18.21
          SP hybridisation, Relative study of SP, SP2, SP3 Hybridisation 46 min
        • Lecture18.22
          Hybridsation involving D-orbitals 39 min
        • Lecture18.23
          Hybridsation with D-orbitals, Limitation of Hybridisation 41 min
        • Lecture18.24
          Calculation of Hybridisation of Central Atom, Problems 43 min
        • Lecture18.25
          Merits & demerits of VBT, Introduction to MOT 33 min
        • Lecture18.26
          MO formation, Bond Order 43 min
        • Lecture18.27
          MO with P-orbitals, B2, Magnetic Character 43 min
        • Lecture18.28
          MO of Diatomic Species, Hetroatomic Species 51 min
        • Lecture18.29
          Secondary Bondings 39 min
        • Lecture18.30
          H Bonding 37 min
        • Lecture18.31
          Metallic Bonding 52 min
        • Lecture18.32
          Chapter Notes – Chemical Bonding
      • 19. Periodic Table
        10
        • Lecture19.1
          Development of P.T. 43 min
        • Lecture19.2
          Mandeelev P.T. & Mosley, Modern P.T. 43 min
        • Lecture19.3
          Modern P.T. & Periodic Properties 27 min
        • Lecture19.4
          Atomic Volume & Radius 49 min
        • Lecture19.5
          Atomic Radius, Ionisation Energy 28 min
        • Lecture19.6
          Ionisation Energy 48 min
        • Lecture19.7
          Electron Affinity, Hydration Energy 52 min
        • Lecture19.8
          Electronegativity, Lattice Energy 46 min
        • Lecture19.9
          Oxidising & Reducing Power, Nature of oxides 38 min
        • Lecture19.10
          M.P. & B.P., Density, Bond Energy, Diagonal relationship, Inert Pair Effect 25 min
      • 20. Metallurgy
        7
        • Lecture20.1
          Introduction, Concentration of ore 49 min
        • Lecture20.2
          Roasting, Calcination, smelting 41 min
        • Lecture20.3
          Refining of metal 29 min
        • Lecture20.4
          Pyrometallurgy, electrometallurgy, Hydrometallurgy 32 min
        • Lecture20.5
          Ellingham Diagram 43 min
        • Lecture20.6
          Extraction of Cu & Fe 22 min
        • Lecture20.7
          Extraction of Al & Zn 26 min
      • 21. Hydrogen and its Compounds
        7
        • Lecture21.1
          preparation, properties & Type of Hydrogen 57 min
        • Lecture21.2
          Compounds of Hydrogen, Hydrides, Water, Hydrates 56 min
        • Lecture21.3
          Hardness of Water, H2O2 56 min
        • Lecture21.4
          Problems 48 min
        • Lecture21.5
          Problems 28 min
        • Lecture21.6
          Chapter Notes – Hydrogen and its Compounds
        • Lecture21.7
          NCERT Solutions – Hydrogen
      • 22. S block metals
        8
        • Lecture22.1
          IA 1 – elemental Properties of Alkali metals& its Compounds 57 min
        • Lecture22.2
          IA 2 – Na & its compounds 01 hour
        • Lecture22.3
          IA 3 – Na & its Compounds, Use of Na & K 27 min
        • Lecture22.4
          IIA 1 – Elemental Properties 41 min
        • Lecture22.5
          IIA 2 – Compounds of IIA Metals 53 min
        • Lecture22.6
          IIA 3 – Compounds of Ca 48 min
        • Lecture22.7
          Chapter Notes – S block metals
        • Lecture22.8
          NCERT Solutions – S block metals
      • 23. p block elements
        8
        • Lecture23.1
          Introduction to P – Block & IIIA – elemental properties 51 min
        • Lecture23.2
          IIIA – General properties of compounds & B-compounds 40 min
        • Lecture23.3
          IIIA – Boron compounds, Use of B and Al 35 min
        • Lecture23.4
          IVA – Elemental Properties of C family 46 min
        • Lecture23.5
          IVA – Allotropes of C & compounds of C 01 hour
        • Lecture23.6
          IVA – Compounds of Si 48 min
        • Lecture23.7
          Chapter Notes – p block elements
        • Lecture23.8
          NCERT Solutions – p block elements

        Chapter Notes – p block elements

        Elements in which the last electron enters in the any one of the three p- orbital of their outermost shells – p-block elements

        •  Gen. electronic configuration of outer shell is  ns2np1-6 The inner core of e-config.may differ which greatly influences their physical & to some extent chemical properties.

        •   The block of elements in the periodic table consisting of the main groups :

        • Group13 (B to Tl)
        • Group14 (C to Pb)
        • Group15 (N to Bi)
        • Group 16 (O to Po)
        • Group17 (F to At)
        • Group18 (He to Rn)

        (1)   Members at the top and on the right of the p-block are nonmetals (C, N,   P, O, F, S, Cl, Br, I, At).
        (2) Those on the left and at the bottom are metals (Al, Ga, In,Tl, Sn, Pb, Sb Bi, Po).
        (3)     Between the two, from the top left to bottom right, lie an ill-defined group of metalloid elements (B, Si, Ge, As, Te)

        GROUP 13  : The boron group

        • Outer Electronic Configuration:-ns2np1

        •   group  members:  boron  (B),  aluminum  (Al),  gallium  (Ga),  indium  (In) & thallium (Tl) .  All, except boron, are metals.

        •   Boron show  diagonal relationship with  Silicon;    both are  semiconductors metalloids & forms covalent compounds.

        •    Boron compounds are electron deficient, they are lack of an octet of electrons about the B atom .

        •   diborane B2H6 is  simplest boron hydride
        •   Structure: three-center two-electron: the H atoms are simultaneously bonded to two B atoms the B-H bridging bond lengths are greater than B-H terminal.

        •   – Boron oxide is acidic (it reacts readily with water to form boric acid)

        •   aluminium compounds:aluminium oxide is amphoteric

        •   aluminum  halides,  e.g.,  AlCl3   is  dimer,  an  important  catalyst  in  organic chemistry have anincomplete octet, acts as Lewic acid by accepting lone pairs from Lewic bases, forming adduct

        •   aluminum hydride, e.g., LiAlH4, a reducing agent

        •   Atomic Properties – Electronic Configurations

        Element Symbol Atomic
        No.
        Electronic
        Configuration
        Abundance   in   Earth’s
        Crest (in ppm)
        Boron B 5 [He]2s2 2p1 8
        Aluminium Al 13 [Ne]3s2 3p1 81,300
        Galium Ga 31 [Ar]3d104s2 4p1 15
        Indium In 49 [Kr] 4d105s2 5p1 1
        Thallium Tl 81 [Xe] 5d106s2 6p1 0.3

         Atomic and ionic radii

        •   The   atomic  and   ionic   radii  of   group   13   elements  are   compared  to corresponding elements of group 2.     From left to right in the period, the magnitude of nuclear charge increases but the electrons are added to, the same shell.    These  electrons do  not  screen  each  other,  therefore,  the  electrons experience greater nuclear charge.

        •    In other words, effective nuclear charge increases and thus, size decreases. Therefore, the elements of this group have smaller size than the corresponding elements of second group.

        •   On  moving down the  group  both atomic  and  ionic  radii are  expected to increase due to the addition of new shells. However, the observed atomic radius of Al (143 pm) is slightly more than that of Ga (l35 pm).

         

        Ionization energies

        The first ionization energies of group 13 elements are less than the corresponding members of the alkaline earths.

        The sharp decrease in I.E. from B to Al is due to increase in size. In case of Ga, there are ten d-electrons in its inner electronic configuration.

        The very high value of 3rd I. E. of thallium indicates that +3 O.N. state is not stable, rather +1 is more stable for thallium .

        Electropositive (or metallic) character

        the elements of group 13 are less electropositive as compared to elements of group 2. On moving down the group the electropositive (metallic) character increases because ionization energy decreases. For e.g., Boron is a non-metal white the other elements are typical metals.

        Oxidation states

        The common oxidation states of group 13 elements are +3 and + l .The stability of the + 1 oxidation state increases in the sequence Al <Ga< In <Tl, Due to Inert pair effect.

        Element B Al Ga In Tl
        Oxidation state +3 +3 +3, +1 +3, +1 +3, +1

        Chemical reactivity of Gr.13 Elements

        All elements in their compounds exhibit the oxidation state of + 3 and +1. Hydrides
        •   None of the group 13 elements reacts directly with hydrogen. However, a no.
        of hydrides of these elements have been prepared by indirect methods. The boron hydrides are called boranes& classified in two series:   (a)          BnHn+4 called nidoboranes            (b)       BnHn+6 called arachnoboranes

        •   INUDUSTRIAL PREPERATION :-

        2BF3(g) + 6LiH(s) → B2H6(g) + 6LiF(s)

        •   Laboratory method:

        (i) By the reaction of iodine with sodium borohydride in a high boiling solvent. 2NaBH4 + I2   → B2H6   + 2NaI   + H2
        (ii) By reduction of BCl3 with LiAlH4 4BCl3 +  3LiAlH4 → 2 B2H6  + 3AlCl3   + 3 LiCl

        Structure of Diborane, B2H6

        structure of diborane 26H6
        Structure of Diborane, B2H6

        Some important characteristics of boranes:

        i) Lower boranes are colourless gases while higher boranes are volatile liquids or solids.

        ii) They undergo spontaneous combustion in air due to strong affinity of boron for oxygen. B 2H6   + 3O2   → B2O3   + 3H2O + Heat

        iii)  Boranes react with alkali metal hydrides in diethyl ether to form borohydride complexes. B2H6   + 2MH →2M+[BH4]-  (M= Li or Na) Metal borohydride
        (iv) Diborane reacts with ammonia to give borazine at 450 K. B2H6   + 6NH3    → 3B3N3H6    + 12H2

         

        •   Borazine has a cyclic structure similar to benzene and thus is  called inorganic benzene

        •   The other elements of this group form only a few stable hydrides. The thermal stability decreases as we move down the group.

        •   AlH3 is a colourless solid polymerized via Al – H – Al bridging units. These hydrides are weak Lewis acids and readily form adducts with strong Lewis base (B:) to give compounds of the type MH3 (M = Al or Ga). They also form complex-tetrahydrido anions, [MH4]-. The most important tetrahydrido compound is  Li[AlH4]

        tetrahydrido compound is Li[AlH4]

        OXIDES & HYDROXIDES

        •   M2O 3   & M(OH)3

        basic Character increases

        HALIDES: Structure of boron trihalides

         Structure of boron trihalides

        Dimeric structure of aluminium chloride

        –  Boron halides do not form dimers because the size of boron is so small that it is unable to coordinate four large-sized halide ions.

        structure of aluminium chloride

        •  Anomalous properties of boron

        1. Boron is a non-metal & bad conductor of electricity whereas aluminium is a metal& good conductor. B is  hard but Al is a soft metal.
        2.  Boron exists in two forms-crystalline and amorphous. But Al does not exist in different forms.
        3. The melting and boiling point of boron are much higher than that of Al .
        4. Boron forms only covalent compounds whereas Al forms even some ionic compounds.
        5. The hydroxides and oxides of boron are acidic in nature whereas those of aluminium are amphoteric.
        6. The trihalides of boron exist as monomers. On the other hand, aluminium halides exist as dimers .
        7. The hydrides of boron are quite stable while those of aluminium are unstable

        •   Boron and silicon exhibit the typical properties of non-metals. These do not form cations. Both exist in amorphous as well as crystalline forms.

        •   Boron oxide (B2O3) and silic a (SiO2) both are acidic and dissolve in alkali solutions to form borates and silicates respectively. B2O3   + 6NaOH → 2Na2BO3    + 3H2O SiO2 +  2NaOH → Na2SiO3    + H2O
        •   The chlorides of both B and Si get hydrolyzed by water to boric acid and silicic acid respectively. BCl3   + 3H2O →H3BO3    + 3HCl        SiCl4   + 3H2O   → H2SiO3    + 4HCl

        The  hydrides  of  Boron  and  Silicon  are  quite  stable.  Numerous  volatile hydrides are also known which catch fire on exposure to air and are easily hydrolyzed.  Both elements are semiconductors.

        Behavior in Aqueous Solutions

        1   Al, Ga, In and Tl exhibit a well-defined aqueous chemistry in their tripositive states. Species like [M(OH)4]–, [M(H2O)2(OH)4]–, [M(OH2)6]3+ for M = Al, Ga, In, exist in aqueous solution.

        2.  Al, Ga. In and T1 ions exist as octahedral aqua ions, [M(OH2)6]3 + in aqueous solution and many salts like halides, sulphates, nitrates and perchlorates exist as hydrates.

        3. Aluminiumsulphate forms double salts –  called alum, having the general formula M2SO4. Al2(SO4)3.12H2O, where M=Na+ or K+. USES OF BORON & ALUMINIUM

        •   Aluminium is used extensively in industry and everyday life. It forms many useful alloys with Cu. Mn, Mg, Si and Zn. Hence, aluminium and its alloys find use in packaging, utensil making, construction, aerospace and other transportation industries. It is used as a conductor for transmission of electricity. Aluminium is alsoused in the alumino-thermite process for production of chromium and manganese from their ores.

        Group 14 Elements:-The Carbon Family

        Group 14 includes carbon (C), silicon (Si), germanium (Ge), tin (Sn) and lead (Pb). General electronic configuration of carbon family is ns2np2. Covalent radius:-Covalent radius expected to increase from Cto Si, From Si to Pb small increase is found.
        Ionization Enthalpy:-The first ionization enthalpies of group 14 elements are higher than those of the corresponding group 13 elements. Electronegativity:-Group 14 elements are smaller in size as compared to group 13 elements that’s why this group elements are slightly more electronegative than group13

         

        Chemical properties:-

        Carbon and silicon mostly show +4 oxidation state. Germanium forms stable compounds in +4 state and only few compounds in +2 state.

        Tin forms compounds in both oxidation states. Lead compounds in +2 state are stable and in +4 state are strong oxidizing agents.

        Exception:-Pb4 and SnF4 are ionic in nature.

        Except CCl4 other tetrachlorides are easily hydrolysed by water.

        Since carbon does not have d-orbitals and hence cannot expand its coordination number beyond 4

        CCl4 +H2O           No Reaction

        SiCl4+4H2O         Si(OH)4+4HCl Silicic acid

        Allotropes of Carbon:-The three types of allotropes are –

        1-Diamond
        2-Graphite
        3-Fullerence

        Diamond :-

        In diamond each carbon atom undergas SP3hybridisation. Each carbon is tetrahedrally linked to four other carbon atoms.

        Graphite :-

        In graphite, carbon is SP2-hyberdized graphite has a two-dimensional sheet like structure consisting of a number of hexagonal rings fused together. Graphite conducts electricity along the sheet.It is very soft and Slippery FullerenceFullerence was  discovered collectively by  three  scientists namely R.E Smalley,R.F Curl and H.W Kroto SOME Important Compounds Of Carbon and Silicon

         

        Carbon monoxide :-

        It I  prepared by  direct oxdisation of C  in  limited supply of oxygen. 2C+O2(g)  →   2CO(g Commercially it is prepared by the passage of steam over hot coke

        Carbon Dioxide :-

        It is prepared by complete combustion of carbon and carbon fuels in excess of air.C(s) +O2(g)  → CO2(g)

        Laboratory method:-

        In laboratory it is prepared by the treatment of dilHCl on CaCO3 CaCO3(s) +2HCl(aq) → CaCl2(aq) +CO2>/(g)+H2O(l) Silicon  

        Dioxide :-

        Silicon dioxide is a COVALENT  THREE  DIMENSIONAL NETWORK SOLID.
        Each silicon atom is covalently bonded in a tetrahedral manner to four oxygen atoms. Silicones:-Silicones   are   the   synthetic   organo-siliconpolymers   having   general formulae (R2SiO)n in which R = alkyl (methyl,ethyl or phenyl) Silicates:-Silicates are  exist  in  nature in  the  form of feldspar, zeolites,mica and asbestos etc. The basic structure of silicates is SiO44

        Zeolite s:

        -Zeolites  is  aalumino-silicate  of  metal.  Metal  cations  participating  in formationof Zeolite are use usually Na+,K+,or Ca2+. Zeolites are used to remove permanent hardness of water.

        Prev IVA – Compounds of Si
        Next NCERT Solutions – p block elements

        Leave A Reply Cancel reply

        Your email address will not be published. Required fields are marked *

        All Courses

        • Backend
        • Chemistry
        • Chemistry
        • Chemistry
        • Class 08
          • Maths
          • Science
        • Class 09
          • Maths
          • Science
          • Social Studies
        • Class 10
          • Maths
          • Science
          • Social Studies
        • Class 11
          • Chemistry
          • English
          • Maths
          • Physics
        • Class 12
          • Chemistry
          • English
          • Maths
          • Physics
        • CSS
        • English
        • English
        • Frontend
        • General
        • IT & Software
        • JEE Foundation (Class 9 & 10)
          • Chemistry
          • Physics
        • Maths
        • Maths
        • Maths
        • Maths
        • Maths
        • Photography
        • Physics
        • Physics
        • Physics
        • Programming Language
        • Science
        • Science
        • Science
        • Social Studies
        • Social Studies
        • Technology

        Latest Courses

        Class 8 Science

        Class 8 Science

        ₹8,000.00
        Class 8 Maths

        Class 8 Maths

        ₹8,000.00
        Class 9 Science

        Class 9 Science

        ₹10,000.00

        Contact Us

        +91-8287971571

        contact@dronstudy.com

        Company

        • About Us
        • Contact
        • Privacy Policy

        Links

        • Courses
        • Test Series

        Copyright © 2021 DronStudy Pvt. Ltd.

        Login with your site account

        Lost your password?

        Modal title

        Message modal