• Home
  • Courses
  • Online Test
  • Contact
    Have any question?
    +91-8287971571
    contact@dronstudy.com
    Login
    DronStudy
    • Home
    • Courses
    • Online Test
    • Contact

      Class 11 CHEMISTRY – JEE

      • Home
      • All courses
      • Chemistry
      • Class 11 CHEMISTRY – JEE
      CoursesClass 11ChemistryClass 11 CHEMISTRY – JEE
      • 1. Stoichiometry 1
        13
        • Lecture1.1
          Introduction & POAC 30 min
        • Lecture1.2
          Mole Stoichiometric relationship 29 min
        • Lecture1.3
          Successive reaction & Limiting reagent 25 min
        • Lecture1.4
          Gas Stoichiometry 29 min
        • Lecture1.5
          Important Types of Reactions 25 min
        • Lecture1.6
          Avogadro’s No.1 30 min
        • Lecture1.7
          Mole & Number 28 min
        • Lecture1.8
          Atomic, Molecular Wt 26 min
        • Lecture1.9
          Ionic wt, Avg. At. Wt. 15 min
        • Lecture1.10
          Molar wt. 27 min
        • Lecture1.11
          Molar Volume & Gas Analysis 30 min
        • Lecture1.12
          Gas Analysis 17 min
        • Lecture1.13
          Empirical Formula Determination 26 min
      • 2. Stoichiometry 2
        18
        • Lecture2.1
          Acid Base definition 23 min
        • Lecture2.2
          Acidity & Basicity 32 min
        • Lecture2.3
          Acidic Strength 30 min
        • Lecture2.4
          Acidic Strength 23 min
        • Lecture2.5
          Conjugate Acid-Base pair, Basic Strength 48 min
        • Lecture2.6
          Oxidation & Reduction 50 min
        • Lecture2.7
          Calculation of Oxidation Number 46 min
        • Lecture2.8
          O.A. & R.A., Balancing by Oxidation Number Method 01 hour
        • Lecture2.9
          Balancing by Ion Electron Method. 35 min
        • Lecture2.10
          Eq. Wt. 1 – n factor & Eq. Wt. Concept 47 min
        • Lecture2.11
          Eq. Wt. 2 – Eq. Concept 35 min
        • Lecture2.12
          Volumetric Analysis 43 min
        • Lecture2.13
          Volumetric analysis 44 min
        • Lecture2.14
          Titration – Acid Base Titration 49 min
        • Lecture2.15
          Titration – Acid Base Titration, Indicator 56 min
        • Lecture2.16
          Titration – Redox Titration-8 58 min
        • Lecture2.17
          Titration – Redox Titration, volume Strength of H2O2 50 min
        • Lecture2.18
          Titration – Redox Titration, Iodometry, Oleum, Bleaching Powder 49 min
      • 3. Thermodynamics & Thermochemistry
        19
        • Lecture3.1
          Zeroth Law 55 min
        • Lecture3.2
          1st law – System, Properties, State 40 min
        • Lecture3.3
          1st Law, Process, Internal energy, Work 43 min
        • Lecture3.4
          Work done in Irreversible process, Isobaric Process 49 min
        • Lecture3.5
          Isochoric Process & problems TD 42 min
        • Lecture3.6
          Isothermal irreversible Process, Problems on TD 46 min
        • Lecture3.7
          Adiabatic Process 49 min
        • Lecture3.8
          Problems on TD 44 min
        • Lecture3.9
          Thermochemistry & Enthalpy 38 min
        • Lecture3.10
          Hess’s Law, Kirchhoff’s Law 43 min
        • Lecture3.11
          Enthalpy of Formation, combustion 39 min
        • Lecture3.12
          Enthalpy of Hydrogenation, Hydration, dissolution, lattice energy 40 min
        • Lecture3.13
          Enthapy of Neutralisation, atomisation, Bond Energy 47 min
        • Lecture3.14
          Resonance energy & problems 45 min
        • Lecture3.15
          2nd Law, Entropy-positional 40 min
        • Lecture3.16
          TD Entropy, 3rd Law, Entropy change in a reaction 45 min
        • Lecture3.17
          Gibb’s free energy 43 min
        • Lecture3.18
          Efficiency, engine, pump & Carnot engine 39 min
        • Lecture3.19
          Chapter Notes – Thermodynamics & Thermochemistry
      • 4. Atomic Structure
        22
        • Lecture4.1
          Introduction, Cathode rays & Anode rays 41 min
        • Lecture4.2
          J.J. Thomson Model, Millikan Oil Drop Experiment 38 min
        • Lecture4.3
          Rutherford Experiment 51 min
        • Lecture4.4
          Quantum Mechanics, BlackBody Radiation Experiment 41 min
        • Lecture4.5
          Wave 44 min
        • Lecture4.6
          Photoelectric Effect 46 min
        • Lecture4.7
          Problems on Photoelectric Effect 35 min
        • Lecture4.8
          Atomic Structure 44 min
        • Lecture4.9
          Bohr Theory 47 min
        • Lecture4.10
          H – Spectrum 49 min
        • Lecture4.11
          Problems on Bohr’s Theory 40 min
        • Lecture4.12
          Adv. Problems on Bohr Theory & Sommerfeld model 51 min
        • Lecture4.13
          Quantum Mechanical Model for Atomic Structure 47 min
        • Lecture4.14
          Schrodinger wave equation 54 min
        • Lecture4.15
          No. of Orbitals & Quantum no 45 min
        • Lecture4.16
          Orbital Curve, RPD curve, Definition of Node 46 min
        • Lecture4.17
          Calculation of Node, Orbital Picture 43 min
        • Lecture4.18
          Radial Probability curve, MPD, Avg. distance, Screening effect, Zeff 38 min
        • Lecture4.19
          Multielectron system, Electronic configuration 56 min
        • Lecture4.20
          Stability of Elec. Configuration 36 min
        • Lecture4.21
          Chapter Notes – Atomic Structure
        • Lecture4.22
          NCERT Solutions – Atomic Structure
      • 5. Chemical equilibrium
        9
        • Lecture5.1
          Introduction, Eqb constant & Eqb Position 51 min
        • Lecture5.2
          Types of Eqb Constant, Heterogeneous Eqb, Reaction Quotient 45 min
        • Lecture5.3
          Range of Eqb Constant 43 min
        • Lecture5.4
          Problems on Chemical Eqb 41 min
        • Lecture5.5
          Problems on Chemical Eqb 42 min
        • Lecture5.6
          Le-chatelier Principle 42 min
        • Lecture5.7
          Le-Chatelier Principle 35 min
        • Lecture5.8
          Eqb & 2nd Law of TD 26 min
        • Lecture5.9
          NCERT Solutions – equilibrium
      • 6. Ionic Equilibrium
        17
        • Lecture6.1
          Electrolyte, Dissociation of H2O, Nature of Solution 46 min
        • Lecture6.2
          PH scale, Log & Antilog 40 min
        • Lecture6.3
          PH of Strong Acid, Base Solution 51 min
        • Lecture6.4
          PH of Weak Acid, Base solution 41 min
        • Lecture6.5
          PH of mixture of Acids, Bases 46 min
        • Lecture6.6
          PH of Polybasic acids 40 min
        • Lecture6.7
          PH of Salt Solution 1 43 min
        • Lecture6.8
          PH of salt solution 2 52 min
        • Lecture6.9
          Common ion effect, Buffer solution 49 min
        • Lecture6.10
          Buffer Capacity 45 min
        • Lecture6.11
          Titration & PH Curve 1 40 min
        • Lecture6.12
          Titration & PH curve 2 46 min
        • Lecture6.13
          Acid Base indicator 35 min
        • Lecture6.14
          Solubility Equilibrium 47 min
        • Lecture6.15
          Precipitation of Solid, Qualitative analysis of cation 44 min
        • Lecture6.16
          Complex ion equilibrium 23 min
        • Lecture6.17
          Chapter Notes – Equilibrium
      • 7. Introduction & Development of Org. Chemistry
        3
        • Lecture7.1
          Introduction & Development Of Organic Chemistry 44 min
        • Lecture7.2
          Introduction & Syllabus 36 min
        • Lecture7.3
          NCERT Solutions – Org. Chemistry
      • 8. Nomenclature of Org. Compounds
        16
        • Lecture8.1
          Alkane 59 min
        • Lecture8.2
          Alkane 31 min
        • Lecture8.3
          Alkyl Group & Types Of Hydrogen 01 hour
        • Lecture8.4
          Alkene 54 min
        • Lecture8.5
          Alkenyl 32 min
        • Lecture8.6
          Alkyne & Alkenyl 47 min
        • Lecture8.7
          Cycloalkane 43 min
        • Lecture8.8
          Cycloalkene 35 min
        • Lecture8.9
          Bicycloalkane & Spirane 35 min
        • Lecture8.10
          Acid & Aldehyde 45 min
        • Lecture8.11
          Ester & Acid Halides 28 min
        • Lecture8.12
          Amide & Nitrile 28 min
        • Lecture8.13
          Alcohol & Sulphonic Acid 37 min
        • Lecture8.14
          Isonitrile, Amine, Nitroalkane, Halo Compounds 39 min
        • Lecture8.15
          Ketone, Anhydride & Ether 34 min
        • Lecture8.16
          Polyfunctional Group Compounds 41 min
      • 9. GOC 1- Hybridisation, Resonance, Aromaticity
        16
        • Lecture9.1
          Concept Of Hybridisation 42 min
        • Lecture9.2
          Sp3, Sp2 Hybridisation 44 min
        • Lecture9.3
          Sp Hybridisation, Relative Study Of Sp3, Sp2, Sp Orbitals 46 min
        • Lecture9.4
          Effect Of Hybridisation On Bond Length, Planar Nature 59 min
        • Lecture9.5
          Concept Of Resonance 39 min
        • Lecture9.6
          Doing Resonance 18 min
        • Lecture9.7
          Resonance Hybrid, Cannonical St. , Resonance Energy 44 min
        • Lecture9.8
          Condition Of Resonance 40 min
        • Lecture9.9
          Writing Cannonical St. 39 min
        • Lecture9.10
          Relative Stability Of Cannonical St. 37 min
        • Lecture9.11
          Resonance Energy 45 min
        • Lecture9.12
          Effect Of Resonance On Bond Length, Enthalpy Of Hydrogenation 43 min
        • Lecture9.13
          Introduction To Aromaticity 43 min
        • Lecture9.14
          Introduction To Aromaticity 39 min
        • Lecture9.15
          Unsaturation Factor 31 min
        • Lecture9.16
          Chapter Notes – GOC General Organic chemistry
      • 10. GOC 2 - Substituent effect
        5
        • Lecture10.1
          Substituent Effect, Hyperconjugation 48 min
        • Lecture10.2
          Substituent Effect, Hyperconjugation 43 min
        • Lecture10.3
          Substituent Effect, Mesomeric Effect 47 min
        • Lecture10.4
          Substituent Effect, Inductive Effect 46 min
        • Lecture10.5
          Substituent Effect, Electromeric Effect, Staric Effect, Relative M & I Effect 41 min
      • 11. GOC 2 - Reactive Intermediate
        6
        • Lecture11.1
          Reactive Intermediate, Carbocation 45 min
        • Lecture11.2
          Reactive Intermediate, Carbocation, Carbonium Ion Rearrangement 42 min
        • Lecture11.3
          Reactive Intermediate, Carbonium Ion Rearrangement 41 min
        • Lecture11.4
          Reactive Intermediate, Carbanion 36 min
        • Lecture11.5
          Reactive Intermediate, Free Radical 47 min
        • Lecture11.6
          Reactive Intermediate, Carbene & Nitrene 42 min
      • 12. GOC 2 - Acid, base, Electrophile, Nucleophile
        3
        • Lecture12.1
          Acid Base, Electrophile Nucleophile 50 min
        • Lecture12.2
          Acid Base, Electrophile Nucleophile 47 min
        • Lecture12.3
          Hard Acid Base, Electrophilic Nucleophilic Strength 40 min
      • 13. Isomerism
        20
        • Lecture13.1
          Structural Isomers 39 min
        • Lecture13.2
          Tautomerism 37 min
        • Lecture13.3
          Stability Of Tautomers 43 min
        • Lecture13.4
          Factors Affecting Stability, Catalysis In Tautomerism 39 min
        • Lecture13.5
          Geometrical Isomerism 41 min
        • Lecture13.6
          E-z Nomenclature, Properties Of G.i. 43 min
        • Lecture13.7
          No. Of G.i., Interconversion Of G.i. 48 min
        • Lecture13.8
          Optical Isomerism & Its Conditions 50 min
        • Lecture13.9
          Different Types Of Projections, R-s Configuration 57 min
        • Lecture13.10
          Relationship Between Optical Isomers 45 min
        • Lecture13.11
          Dissymmetry In A Molecule 44 min
        • Lecture13.12
          Enantiomers, Mesomers, Diastereomers 39 min
        • Lecture13.13
          Special Case Of Optical Isomerism 47 min
        • Lecture13.14
          No. Of Optical Isomers, Stereoisomers 45 min
        • Lecture13.15
          D,l Configuration, Retention & Inversion 36 min
        • Lecture13.16
          Measurement Of Optical Activity 45 min
        • Lecture13.17
          No. Of Isomers 35 min
        • Lecture13.18
          Resolution Of Optical Isomers, Syn, Anti Addition, Elimination. 28 min
        • Lecture13.19
          Conformational Isomers 51 min
        • Lecture13.20
          Conformers Of Propane, Butane, Cyclohexane & Problems 44 min
      • 14. Reaction Mechanism
        21
        • Lecture14.1
          Introduction, Types Of Organic Reactions 35 min
        • Lecture14.2
          Nucleophilic Substitution Reaction 40 min
        • Lecture14.3
          Sn1 & Sn2 Reaction, Sni Pathway 53 min
        • Lecture14.4
          Reactivity In Sn1 & Sn2 Path 42 min
        • Lecture14.5
          Reactivity In Sn1 & Sn2 Path 36 min
        • Lecture14.6
          Reactivity In Sn1 & Sn2 Path 30 min
        • Lecture14.7
          Reactivity In Sn1 & Sn2 Path 41 min
        • Lecture14.8
          Elimination Reaction 53 min
        • Lecture14.9
          E1 & E2 Reaction, Isotopic Effect 46 min
        • Lecture14.10
          Orientation In Elimination Reaction 45 min
        • Lecture14.11
          Problems On Elimination Reaction 48 min
        • Lecture14.12
          Elimination Vs Substitution 34 min
        • Lecture14.13
          Addition Reaction 51 min
        • Lecture14.14
          Problems On Addition Reaction 46 min
        • Lecture14.15
          Electrophilic Aromatic Substitution Reaction 49 min
        • Lecture14.16
          Orientation In Electrophilic Aromatic Substitution 53 min
        • Lecture14.17
          Reactivity In Electrophilic Aromatic Substitution Reaction 30 min
        • Lecture14.18
          Examples Of Electrophilic Aromatic Substitution Reaction 37 min
        • Lecture14.19
          Examples Of Electrophilic Aromatic Substitution Reaction 37 min
        • Lecture14.20
          Nucleophilic Aromatic Substitution 44 min
        • Lecture14.21
          Benzyne Pathway 27 min
      • 15. Alkane
        7
        • Lecture15.1
          Alkane Preparation 49 min
        • Lecture15.2
          Alkane Preparation & Selective Hydrogenation 31 min
        • Lecture15.3
          Alkane Preparation 40 min
        • Lecture15.4
          Alkane Preparation 38 min
        • Lecture15.5
          Alkane Preparation 32 min
        • Lecture15.6
          Alkane Properties 55 min
        • Lecture15.7
          Alkane Properties & Problems 39 min
      • 16. Alkene
        7
        • Lecture16.1
          Alkene Preparation 45 min
        • Lecture16.2
          Alkene Preparation 36 min
        • Lecture16.3
          Alkene Properties 53 min
        • Lecture16.4
          Alkene Properties 40 min
        • Lecture16.5
          Alkene Properties 42 min
        • Lecture16.6
          Alkene Properties & Ozonolysis 41 min
        • Lecture16.7
          Alkene Properties, Oxidation, Substitution 38 min
      • 17. Alkyl Halides
        4
        • Lecture17.1
          Preparation 38 min
        • Lecture17.2
          Properties 49 min
        • Lecture17.3
          Haloform Reaction 28 min
        • Lecture17.4
          Grignard Reagent 29 min
      • 18. Chemical Bonding
        32
        • Lecture18.1
          Introduction, definition, Concept & Type of Bonding 53 min
        • Lecture18.2
          Ionic Bonding, covalent bonding 50 min
        • Lecture18.3
          Ionic Character in Covalent Bonding, Electronegativity 34 min
        • Lecture18.4
          Dipole Moment 42 min
        • Lecture18.5
          Fajan’s Rule 34 min
        • Lecture18.6
          Model for Covalent Compound, V.B.T. – Lewis St. Model 56 min
        • Lecture18.7
          Lewis Structure Model 45 min
        • Lecture18.8
          Formal Charge 46 min
        • Lecture18.9
          Formal Charge Rule 44 min
        • Lecture18.10
          Resonance 43 min
        • Lecture18.11
          Merits & Demerits of Lewis St. Model 44 min
        • Lecture18.12
          Drawing Lewis St. 30 min
        • Lecture18.13
          VSEPR 1 49 min
        • Lecture18.14
          VSEPR 2 51 min
        • Lecture18.15
          VSEPR 3 51 min
        • Lecture18.16
          VSEPR 4 33 min
        • Lecture18.17
          BackBonding 38 min
        • Lecture18.18
          Bond Angle determination 47 min
        • Lecture18.19
          Concept of Hybridisation 44 min
        • Lecture18.20
          Sp3, Sp2 Hybridisation 44 min
        • Lecture18.21
          SP hybridisation, Relative study of SP, SP2, SP3 Hybridisation 46 min
        • Lecture18.22
          Hybridsation involving D-orbitals 39 min
        • Lecture18.23
          Hybridsation with D-orbitals, Limitation of Hybridisation 41 min
        • Lecture18.24
          Calculation of Hybridisation of Central Atom, Problems 43 min
        • Lecture18.25
          Merits & demerits of VBT, Introduction to MOT 33 min
        • Lecture18.26
          MO formation, Bond Order 43 min
        • Lecture18.27
          MO with P-orbitals, B2, Magnetic Character 43 min
        • Lecture18.28
          MO of Diatomic Species, Hetroatomic Species 51 min
        • Lecture18.29
          Secondary Bondings 39 min
        • Lecture18.30
          H Bonding 37 min
        • Lecture18.31
          Metallic Bonding 52 min
        • Lecture18.32
          Chapter Notes – Chemical Bonding
      • 19. Periodic Table
        10
        • Lecture19.1
          Development of P.T. 43 min
        • Lecture19.2
          Mandeelev P.T. & Mosley, Modern P.T. 43 min
        • Lecture19.3
          Modern P.T. & Periodic Properties 27 min
        • Lecture19.4
          Atomic Volume & Radius 49 min
        • Lecture19.5
          Atomic Radius, Ionisation Energy 28 min
        • Lecture19.6
          Ionisation Energy 48 min
        • Lecture19.7
          Electron Affinity, Hydration Energy 52 min
        • Lecture19.8
          Electronegativity, Lattice Energy 46 min
        • Lecture19.9
          Oxidising & Reducing Power, Nature of oxides 38 min
        • Lecture19.10
          M.P. & B.P., Density, Bond Energy, Diagonal relationship, Inert Pair Effect 25 min
      • 20. Metallurgy
        7
        • Lecture20.1
          Introduction, Concentration of ore 49 min
        • Lecture20.2
          Roasting, Calcination, smelting 41 min
        • Lecture20.3
          Refining of metal 29 min
        • Lecture20.4
          Pyrometallurgy, electrometallurgy, Hydrometallurgy 32 min
        • Lecture20.5
          Ellingham Diagram 43 min
        • Lecture20.6
          Extraction of Cu & Fe 22 min
        • Lecture20.7
          Extraction of Al & Zn 26 min
      • 21. Hydrogen and its Compounds
        7
        • Lecture21.1
          preparation, properties & Type of Hydrogen 57 min
        • Lecture21.2
          Compounds of Hydrogen, Hydrides, Water, Hydrates 56 min
        • Lecture21.3
          Hardness of Water, H2O2 56 min
        • Lecture21.4
          Problems 48 min
        • Lecture21.5
          Problems 28 min
        • Lecture21.6
          Chapter Notes – Hydrogen and its Compounds
        • Lecture21.7
          NCERT Solutions – Hydrogen
      • 22. S block metals
        8
        • Lecture22.1
          IA 1 – elemental Properties of Alkali metals& its Compounds 57 min
        • Lecture22.2
          IA 2 – Na & its compounds 01 hour
        • Lecture22.3
          IA 3 – Na & its Compounds, Use of Na & K 27 min
        • Lecture22.4
          IIA 1 – Elemental Properties 41 min
        • Lecture22.5
          IIA 2 – Compounds of IIA Metals 53 min
        • Lecture22.6
          IIA 3 – Compounds of Ca 48 min
        • Lecture22.7
          Chapter Notes – S block metals
        • Lecture22.8
          NCERT Solutions – S block metals
      • 23. p block elements
        8
        • Lecture23.1
          Introduction to P – Block & IIIA – elemental properties 51 min
        • Lecture23.2
          IIIA – General properties of compounds & B-compounds 40 min
        • Lecture23.3
          IIIA – Boron compounds, Use of B and Al 35 min
        • Lecture23.4
          IVA – Elemental Properties of C family 46 min
        • Lecture23.5
          IVA – Allotropes of C & compounds of C 01 hour
        • Lecture23.6
          IVA – Compounds of Si 48 min
        • Lecture23.7
          Chapter Notes – p block elements
        • Lecture23.8
          NCERT Solutions – p block elements

        Chapter Notes – Atomic Structure

        STRUCTURE OF ATOM

        • Atom is the smallest indivisible particle of the matter. Atom is made of electron, proton and neutrons.
        PARTICLE ELECTRON PROTON NEUTRON
        Discovery Sir. J. J. Thomson 

        (1869)

        Goldstein (1886) Chadwick (1932)
        Nature of charge Negative Positive Neutral
        Amount of charge 1.6 x 10-19Coloumb 1.6 x 10-19Coloumb 0
        Mass 9.11 x 10-31kg 1.672614 x 10-27kg 1.67492 x10-27kg
        • Electrons were discovered using cathode ray discharge tube experiment.
        • Nucleus was discovered by Rutherford in 1911.
        •  Cathode ray discharge tube experiment: A cathode ray discharge tube madeof glass is taken with two electrodes. At very low pressure and high voltage,current starts flowing through a stream of particles moving in the tube fromcathode to anode. These rays were called cathode rays. When a perforatedanode was taken, the cathode rays struck the other end of the glass tube atthe fluorescent coating and a bright spot on the coating was developed

        Results:

          1. Cathode rays consist of negatively charged electrons.
          2. Cathode rays themselves are not visible but their behavior can be observed with help of fluorescent or phosphorescent materials.
          3. In absence of electrical or magnetic field cathode rays travel in straight lines
          4. In presence of electrical or magnetic field, behaviour of cathode rays is similar to that shown by electrons
          5. The characteristics of the cathode rays do not depend upon the material of the electrodes and the nature of the gas present in the cathode ray tube.
        •  Charge to mass ratio of an electron was determined by Thomson. The chargeto mass ratio of an electron as 1.758820 x 1011 C kg-1
        •  Charge on an electron was determined by R A Millikan by using an oil dropexperiment. The value of the charge on an electron is -1.6 x 10-19C.
        •  The mass on an electron was determined by combining the results ofThomson’s experiment and Millikan’s oil drop experiment. The mass of anelectron was determined to be 9.1094 x 10-31kg.

        Discovery of protons and canal rays: Modified cathode ray tube experimentwas carried out which led to the discovery of protons.

        •  Characteristics of positively charged particles:
        1. Charge to mass ratio of particles depends on gas from which these originate
        2. The positively charged particles depend upon the nature of gas present in the cathode ray discharge tube
        3. Some of the positively charged particles carry a multiple of fundamental of electrical charge.
        4. Behaviour of positively charged particles in electrical or magnetic field is opposite to that observed for cathode rays

         

        •  Neutrons were discovered by James Chadwick by bombarding a thin sheet of beryllium by α- particles. They are electrically neutral particles having a mass slightly greater than that of the protons.
        •  Atomic number (Z) : the number of protons present in the nucleus (Moseley1913).
        •  Mass Number (A) :Sum of the number of protons and neutrons present in thenucleus.
        •   Thomson model of an atom: This model proposed that atom is considered asa uniform positively charged sphere and electrons are embedded in it.An important feature of Thomson model of an atom was that mass of atom isconsidered to be evenly spread over the atom.Thomson model of atom is also called as Plum pudding, raisin pudding orwatermelon modelThomson model of atom was discarded because it could not explain certainexperimental results like the scattering of α- particles by thin metal foils.
        • Observations from α- particles scattering experiment by Rutherford:
        1. Most of the α- particles passed through gold foil un deflected
        2. A small fraction of α- particles got deflected through small angles
        3. Very few α- particles did not pass through foil but suffered large deflection nearly180o
        •  Conclusions Rutherford drew from α- particles scattering experiment:
        1. Since most of the α-particles passed through foil undeflected, it means most of the space in atom is empty
        2. Since some of the α-particles are deflected to certain angles, it means that there is positively mass present in atom
        3. Since only some of the α-particles suffered large deflections, the positively charged mass must be occupying very small space
        4. Strong deflections or even bouncing back of α-particles from metal foil were due to direct collision with positively charged mass in atom

        Rutherford’s model of atom: This model explained that atom consists ofnucleus which is concentrated in a very small volume. The nucleus comprisesof protons and neutrons. The electrons revolve around the nucleus in fixedorbits. Electrons and nucleus are held together by electrostatic forces ofattraction.

         Drawbacks of Rutherford’s model of atom:

        1. According to Rutherford’s model of atom, electrons which are negatively charged particles revolve around the nucleus in fixed orbits. Thus,
        2. theelectrons undergo acceleration. According to electromagnetic theory of Maxwell, a charged particle undergoing acceleration should emitelectromagnetic radiation. Thus, an electron in an orbit should emitradiation. Thus, the orbit should shrink. But this does not happen.
        3. The model does not give any information about how electrons aredistributed around nucleus and what are energies of these electrons

        Isotopes: These are the atoms of the same element having the same atomicnumber but different mass number.e g 1H1,1H2,1H3

        Isobars: Isobars are the atoms of different elements having the same massnumber but different atomic number.e g 18Ar40 , 20Ca40

        Isoelectronic species: These are those species which have the same numberof electrons.

        Electromagnetic radiations: The radiations which are associated withelectrical and magnetic fields are called electromagnetic radiations. When anelectrically charged particle moves under acceleration, alternating electricaland magnetic fields are produced and transmitted. These fields aretransmitted in the form of waves. These waves are called electromagneticwaves or electromagnetic radiations.

         

         Properties of electromagnetic radiations:

        1. Oscillating electric and magnetic field are produced by oscillating charged particles. These fields are perpendicular to each other and both areperpendicular to the direction of propagation of the wave.
        2. They do not need a medium to travel. That means they can even travel in vacuum.

         Characteristics of electromagnetic radiations:

          1. Wavelength: It may be defined as the distance between two neighbouring crests or troughs of wave as shown. It is denoted by λ.
          2. Frequency (ν): It may be defined as the number of waves which passthrough a particular point in one second.
          3. Velocity (v): It is defined as the distance travelled by a wave in onesecond. In vacuum all types of electromagnetic radiations travel with thesame velocity. Its value is 3 X108m sec-1. It is denoted by v
          4. Wave number: Wave number  is defined as the number of wavelengths per unit length.

        Velocity = frequency x wavelength c = νλ

        Planck’s Quantum Theory-

        • The radiant energy is emitted or absorbed not continuously but discontinuously in the form of small discrete packets of energy called ‘quantum’. In case of light , the quantum of energy is called a ‘photon’
        • The energy of each quantum is directly proportional to the frequency of the radiation, i.e. E α υ or E= hυ where h= Planck’s constant = 6.626 x 10-27 Js
        • Energy is always emitted or absorbed as integral multiple of this quantum. E=nhυ Where n=1,2,3,4,…..

        Black body: An ideal body, which emits and absorbs all frequencies, is calleda black body. The radiation emitted by such a body is called black bodyradiation.

        Photoelectric effect: The phenomenon of ejection of electrons from thesurface of metal when light of suitable frequency strikes it is calledphotoelectric effect. The ejected electrons are called photoelectrons.

        Experimental results observed for the experiment of Photoelectric effect-

        • When beam of light falls on a metal surface electrons are ejectedimmediately.
        • Number of electrons ejected is proportional to intensity or brightness of light
        • Threshold frequency (vo): For each metal there is a characteristicminimum frequency below which photoelectric effect is not observed. Thisis called threshold frequency.
        • If frequency of light is less than the threshold frequency there is noejection of electrons no matter how long it falls on surface or how high isits intensity.

        Photoelectric work function (Wo): The minimum energy required to ejectelectrons is called photoelectric work function.Wo= hvo

        Energy of the ejected electrons :

        Dual behavior of electromagnetic radiation- The light possesses both particle and wave like properties, i.e., light has dual behavior . whenever radiation interacts with matter, it displays particle like properties.(Black body radiation and photoelectric effect) Wave like properties are exhibited when it propagates(interference an diffraction)

        When a white light is passed through a prism, it splits into a series ofcoloured bands known as spectrum.

         

        Spectrum is of two types: continuous and line spectrum

        1. The spectrum which consists of all the wavelengths is called continuous spectrum.
        2. A spectrum in which only specific wavelengths are present is known as a line spectrum. It has bright lines with dark spaces between them.

        Electromagnetic spectrum is a continuous spectrum. It consists of a range ofelectromagnetic radiations arranged in the order of increasing wavelengths ordecreasing frequencies. It extends from radio waves to gamma rays.

        Spectrum is also classified as emission and line spectrum.

        • Emission spectrum: The spectrum of radiationemitted by a substance that has absorbed energy is called an emissionspectrum.
        • Absorption spectrum is the spectrum obtained when radiation is passedthrough a sample of material. The sample absorbs radiation of

        certainwavelengths. The wavelengths which are absorbed are missing and comeas dark lines.

         The study of emission or absorption spectra is referred as spectroscopy. Spectral Lines for atomic hydrogen:

        Rydberg equation

         R = Rydberg’s constant = 109677 cm-1

         Bohr’s model for hydrogen atom:

        1.  An electron in the hydrogen atom can move around the nucleus in a circular path of fixed radius and energy. These paths are called orbits orenergy levels. These orbits are arranged concentrically around thenucleus.
        2. As long as an electron remains in a particular orbit, it does not lose or gain energy and its energy remains constant.
        3. When transition occurs between two stationary states that differ inenergy, the frequency of the radiation absorbed or emitted can becalculated

        1. An electron can move only in those orbits for which its angularmomentum is an integral multiple of h/2π

         

        The radius of the nth orbit is given byrn =52.9 pm x n2

        Z

          energy of electron in nth orbit is :

         Limitations of Bohr’s model of atom:

        1. Bohr’s model failed to account for the finer details of the hydrogen spectrum.
        2. Bohr’s model was also unable to explain spectrum of atoms containing more than one electron.

        Dual behavior of matter: de Broglie proposed that matter exhibits dualbehavior i.e. matter shows both particle and wave nature. de Broglie’s relation is

        Heisenberg’s uncertainty principle: It states that it is impossible to determine simultaneously, the exact position and exact momentum (or velocity) of an electron.The product of their uncertainties is always equal to or greater than h/4π.

        Heisenberg’s uncertainty principle rules out the existence of definite pathsor trajectories of electrons and other similar particles

        Failure of Bohr’s model:

          1. It ignores the dual behavior of matter.
          2. It contradicts Heisenberg’s uncertainty principle.

        Classical mechanics is based on Newton’s laws of motion. It successfullydescribes the motion of macroscopic particles but fails in the case ofmicroscopic particles.

        Reason: Classical mechanics ignores the concept of dual behaviour of matter especially for sub-atomic particles and the Heisenberg’s uncertainty principle.

        Quantum mechanics is a theoretical science that deals with the study of themotions of the microscopic objects that have both observable wave like andparticle like properties.

        Quantum mechanics is based on a fundamental equation which is calledSchrodinger equation.

        Schrodinger’s equation: For a system (such as an atom or a molecule whoseenergy does not change with time) the Schrödinger equation is written as:

         

        When Schrödinger equation is solved for hydrogen atom, the solution givesthe possible energy levels the electron can occupy and the correspondingwave function(s) of the electron associated with each energy level.Out of the possible values, only certain solutions are permitted. Eachpermitted solution is highly significant as it corresponds to a definite energystate. Thus, we can say that energy is quantized.

        ψ gives us the amplitude of wave. The value of ψhas no physicalsignificance. Ψ2gives us the region in which the probability of finding an electron ismaximum. It is called probability density.

        Orbital: The region of space around the nucleus where the probability offinding an electron is maximum is called an orbital.

        Quantum numbers: There are a set of four quantum numbers which specifythe energy, size, shape and orientation of an orbital. To specify an orbital only three quantum numbers are required while to specify an electron all four quantum numbers are required.

        Principal quantum number (n):It identifies shell, determines sizes and

        energy of orbitals

        Azimuthal quantum number (l): Azimuthal quantum number. ‘l’ is also known as orbital angular momentum or subsidiary quantum number. l. It identifies sub-shell, determines the shape of orbitals, energy of orbitals in multi-electron atoms along with principal quantum number and orbital angular momentum, i.e.,  The number of orbitals in a subshell = 2l + 1. For a given value of n, it can have n values ranging from 0 to n-1. Total number of subshells in a particular shell is equal to the value of n.

        Subshell 

        notation

        s p d f g
        Value of ‘l’ 0 1 2 3 4
        Number of 

        orbitals

        1 3 5 7 9

        Magnetic quantum number or Magnetic orbital quantum number (ml): Itgives information about the spatial orientation of the orbital with respect tostandard set of co-ordinate axis.For any sub-shell (defined by ‘l’ value) 2l+1 values of ml are possible.For each value of l, ml = – l, – (l –1), – (l–2)… 0,1… (l – 2), (l–1), l

        Electron spin quantum number (ms): It refers to orientation of the spin of theelectron. It can have two values +1/2 and -1/2. +1/2 identifies the clockwisespin and -1/2 identifies the anti- clockwise spin.

        The region where this probability density function reduces to zero is callednodal surfaces or simply nodes.

        Radial nodes: Radial nodes occur when the probability density of wave functionfor the electron is zero on a spherical surface of a particular radius. Numberof radial nodes = n – l – 1

        Angular nodes: Angular nodes occur when the probability density wavefunction for the electron is zero along the directions specified by a particularangle. Number of angular nodes = l

        Total number of nodes = n – 1

        Degenerate orbitals: Orbitals having the same energy are called degenerateorbitals.

        Shape of p and d-orbitals

         

         

        Shielding effect or screening effect: Due to the presence of electrons in theinner shells, the electron in the outer shell will not experience the full positivecharge on the nucleus.

        So, due to the screening effect, the net positive charge experienced by theelectron from the nucleus is lowered and is known as effective nuclear charge. Effective nuclear charge experienced by the orbital decreases with increase of azimuthal quantum number (l).

        Aufbau Principle: In the ground state of the atoms, the orbitals are filled inorder of their increasing energies

        n+l rule-Orbitals with lower value of (n+l) have lower energy. If two orbitals have the same value of (n+l) then orbital with lower value of nwill have lower energy.

        The order in which the orbitals are filled isas follows: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 4f, 5d, 6p, 7s…

        Pauli Exclusion Principle: No two electrons in an atom can have the same setof four quantum numbers. Only two electrons may exist in the same orbitaland these electrons must have opposite spin.

        Hund’s rule of maximum multiplicity: Pairing of electrons in the orbitalsbelonging to the same subshell (p, d or f) does not take place until eachorbital belonging to that subshell has got one electron each i.e., it is singlyoccupied.

        Electronic configuration of atoms:Arrangement of electrons in different orbitals of an atom. The electronic configuration of differentatoms can be represented in two ways.

        1. sapbdc notation.
        2.  Orbital diagram:, each orbital of the subshell is represented by a box and the electron is represented by an arrow (↑) a positive spin or an arrow (↓) a negative spin.

         Stability of completely filled and half filled subshells:

        Symmetrical distribution of electrons- the completely filled or half-filled sub-shells have a symmetrical distribution of electrons in them and are more stable.

        Exchange energy-The two or more electrons with the same spin present in the degenerate orbitals of a sub-shell can exchange their position and the energy released due to this exchange is called exchange energy. The number of exchanges is maximum when the subshell is either half filled or completely filled. As a result the exchange energy is maximum and so is the stability.

        Prev Stability of Elec. Configuration
        Next NCERT Solutions – Atomic Structure

          1 Comment

        1. Jyoshmamayee Sasmal
          December 22, 2021
          Reply

          Excellent

        Leave A Reply Cancel reply

        Your email address will not be published. Required fields are marked *

        All Courses

        • Backend
        • Chemistry
        • Chemistry
        • Chemistry
        • Class 08
          • Maths
          • Science
        • Class 09
          • Maths
          • Science
          • Social Studies
        • Class 10
          • Maths
          • Science
          • Social Studies
        • Class 11
          • Chemistry
          • English
          • Maths
          • Physics
        • Class 12
          • Chemistry
          • English
          • Maths
          • Physics
        • CSS
        • English
        • English
        • Frontend
        • General
        • IT & Software
        • JEE Foundation (Class 9 & 10)
          • Chemistry
          • Physics
        • Maths
        • Maths
        • Maths
        • Maths
        • Maths
        • Photography
        • Physics
        • Physics
        • Physics
        • Programming Language
        • Science
        • Science
        • Science
        • Social Studies
        • Social Studies
        • Technology

        Latest Courses

        Class 8 Science

        Class 8 Science

        ₹8,000.00
        Class 8 Maths

        Class 8 Maths

        ₹8,000.00
        Class 9 Science

        Class 9 Science

        ₹10,000.00

        Contact Us

        +91-8287971571

        contact@dronstudy.com

        Company

        • About Us
        • Contact
        • Privacy Policy

        Links

        • Courses
        • Test Series

        Copyright © 2021 DronStudy Pvt. Ltd.

        Login with your site account

        Lost your password?

        Modal title

        Message modal